Jonathan Elmer

Senior Lecturer in Mathematics

Design Engineering and Mathematics

Middlesex University

Invariant Theory, Commutative Algebra, Representation Theory

MMath (Cambridge, 2003) PhD (Kent, 2007)

Profile Picture

Latest Additions

  1. Jonathan, Elmer ORCID: https://orcid.org/0000-0001-5296-1987 (2022) Modular covariants of cyclic groups of order p. Journal of Algebra . ISSN 0021-8693 [Article] (Accepted/In press)
  2. Elmer, Jonathan ORCID: https://orcid.org/0000-0001-5296-1987 (2021) The relative Heller operator and relative cohomology for the Klein 4-group. Communications in Algebra . ISSN 0092-7872 [Article] (Published online first) (doi:10.1080/00927872.2021.1984496)
  3. Elmer, Jonathan ORCID: https://orcid.org/0000-0001-5296-1987 and Sezer, Müfit (2020) Degree bounds for modular covariants. Forum Mathematicum, 32 (4) . pp. 905-910. ISSN 0933-7741 [Article] (doi:10.1515/forum-2019-0196)
  4. Elmer, Jonathan ORCID: https://orcid.org/0000-0001-5296-1987 and Sezer, Mufit (2018) Locally finite derivations and modular coinvariants. Quarterly Journal of Mathematics, 69 (3) . pp. 1053-1062. ISSN 0033-5606 [Article] (doi:10.1093/qmath/hay013)
  5. Elmer, Jonathan ORCID: https://orcid.org/0000-0001-5296-1987 and Kohls, Martin (2017) On separating a fixed point from zero by invariants. Communications in Algebra, 45 (1) . pp. 371-375. ISSN 0092-7872 [Article] (doi:10.1080/00927872.2016.1175465)
  6. Elmer, Jonathan ORCID: https://orcid.org/0000-0001-5296-1987 and Kohls, Martin (2016) Zero-separating invariants for linear algebraic groups. Proceedings of the Edinburgh Mathematical Society, 59 (4) . pp. 911-924. ISSN 0013-0915 [Article] (doi:10.1017/S0013091515000322)
  7. Elmer, Jonathan ORCID: https://orcid.org/0000-0001-5296-1987 (2017) Symmetric powers and modular invariants of elementary abelian p-groups. Journal of Algebra, 492 . pp. 157-184. ISSN 0021-8693 [Article] (doi:10.1016/j.jalgebra.2017.07.020)
  8. Elmer, Jonathan ORCID: https://orcid.org/0000-0001-5296-1987 and Kohls, Martin (2014) Zero-separating invariants for finite groups. Journal of Algebra, 411 . pp. 92-113. ISSN 0021-8693 [Article] (doi:10.1016/j.jalgebra.2014.03.044)
  9. Dufresne, Emilie, Elmer, Jonathan ORCID: https://orcid.org/0000-0001-5296-1987 and Sezer, Mufit (2014) Separating invariants for arbitrary linear actions of the additive group. Manuscripta Mathematica, 143 (1) . pp. 207-219. ISSN 0025-2611 [Article] (doi:10.1007/s00229-013-0625-y)
  10. Elmer, Jonathan ORCID: https://orcid.org/0000-0001-5296-1987 and Kohls, Martin (2012) Separating Invariants for the Basic G_a actions. Proceedings of the American Mathematical Society, 140 (1) . pp. 135-146. ISSN 0002-9939 [Article]