
This version is available at: http://eprints.mdx.ac.uk/8611/

Copyright:

Middlesex University Research Repository makes the University's research available electronically.

Copyright and moral rights to this work are retained by the author and/or other copyright owners unless otherwise stated. The work is supplied on the understanding that any use for commercial gain is strictly forbidden. A copy may be downloaded for personal, non-commercial, research or study without prior permission and without charge.

Works, including theses and research projects, may not be reproduced in any format or medium, or extensive quotations taken from them, or their content changed in any way, without first obtaining permission in writing from the copyright holder(s). They may not be sold or exploited commercially in any format or medium without the prior written permission of the copyright holder(s).

Full bibliographic details must be given when referring to, or quoting from full items including the author's name, the title of the work, publication details where relevant (place, publisher, date), pagination, and for theses or dissertations the awarding institution, the degree type awarded, and the date of the award.

If you believe that any material held in the repository infringes copyright law, please contact the Repository Team at Middlesex University via the following email address:

eprints@mdx.ac.uk

The item will be removed from the repository while any claim is being investigated.

See also repository copyright: re-use policy: http://eprints.mdx.ac.uk/policies.html#copy
The infective prion agent (PrPsc) is implicated in the pathogenesis of Transmissible Spongiform Encephalopathies (TSE) including CJD in humans, BSE in cow, CWD in deer and elk and scrapie in sheep and goat (1). The stability and resistance of this agent in the soil environment (2) and against conventional cleaning and sterilisation procedures (3) constitutes public health and agricultural challenges. Common physical and chemical decontamination methods are generally harsh, unsafe and inefficient (4-5). These limitations position the enzymatic approach to prion degradation as a potentially attractive and desirable environmentally friendly alternative (6-7).

The aim of this study was to constitute an enzymatic composition of biological agents which degrade ME7 scrapie prion under mild digestion conditions. An enzymatic composition (EF+BS) was constituted with purified keratinase N22 isolated from farmyard waste and a biological agent (BS) derived from another bacterium. ME7 scrapie prion brain homogenate was digested with proteinase K (77 µg/ml for 1 h) to determine their efficiency for degrading PrPsc. The loss of PrPsc signal to undetectable levels by Western blot analysis. Time increasing disintegration of PrPsc with a significant loss of PrPsc signal was achieved with EF+BS.

Results

Fig. 1: Lane 1 is ME7 brain homogenate digested with PK (77 µg/ml for 1 h), Lane 2 is ME7 brain homogenate digested with PK (77 µg/ml for 1 h) and EF+BS, Lane 4 and 5 are ME7 brain homogenate digested with EF+BS. Lanes 37 KDa and 25 KDa are molecular weight markers.

Lane 1 shows the complete loss of PrPsc signal, Lane 2 shows a partial loss of PrPsc signal, Lane 3 shows no loss of PrPsc signal, Lane 4 shows a complete loss of PrPsc signal, and Lane 5 shows a partial loss of PrPsc signal.