
Middlesex University Research Repository
An open access repository of

Middlesex University research

http://eprints.mdx.ac.uk

Kammueller, Florian ORCID: https://orcid.org/0000-0001-5839-5488 (2011) Privacy
enforcement and analysis for functional active objects. Lecture Notes in Computer Science,

6514 . pp. 93-107. ISSN 0302-9743 [Article] (doi:10.1007/978-3-642-19348-4_8)

UNSPECIFIED

This version is available at: http://eprints.mdx.ac.uk/6516/

Copyright:

Middlesex University Research Repository makes the University’s research available electronically.

Copyright and moral rights to this work are retained by the author and/or other copyright owners
unless otherwise stated. The work is supplied on the understanding that any use for commercial gain
is strictly forbidden. A copy may be downloaded for personal, non-commercial, research or study
without prior permission and without charge.

Works, including theses and research projects, may not be reproduced in any format or medium, or
extensive quotations taken from them, or their content changed in any way, without first obtaining
permission in writing from the copyright holder(s). They may not be sold or exploited commercially in
any format or medium without the prior written permission of the copyright holder(s).

Full bibliographic details must be given when referring to, or quoting from full items including the
author’s name, the title of the work, publication details where relevant (place, publisher, date), pag-
ination, and for theses or dissertations the awarding institution, the degree type awarded, and the
date of the award.

If you believe that any material held in the repository infringes copyright law, please contact the
Repository Team at Middlesex University via the following email address:

eprints@mdx.ac.uk

The item will be removed from the repository while any claim is being investigated.

See also repository copyright: re-use policy: http://eprints.mdx.ac.uk/policies.html#copy

http://eprints.mdx.ac.uk
http://eprints.mdx.ac.uk/6516/
mailto:eprints@mdx.ac.uk
http://eprints.mdx.ac.uk/policies.html#copy

Privacy Enforcement and Analysis for
Functional Active Objects

Florian Kammüller

Middlesex University London and TU Berlin

Data Privacy Management
Athens, 23. September 2010

Motivation and goals

• Language analysis with interactive theorem provers (HOL)
“Killer-Application” (Java, C)

• We develop new language ASPfun in Isabelle/HOL:
calculus of functional, active objects, distributed, plus
typing

=⇒ Explore language based security for distributed active
objects;

=⇒ Enforce and analyse privacy by flexible parameterization
(currying)

=⇒ Long-term goal: Language based assembly kit for
distributed security (LB-MAKS)

2

Overview

1 ASPfun

2 Example for ASPfun: Service Triangle

3 Privacy Enforcement and Analysis

3

ASPfun – Asynchronous Sequential Processes –
functional

• ProActive (Inria/ActiveEON): Java API for active objects

• New calculus ASPfun for ProActive
• Asynchronous communication with Futures

• Futures are promises to results of method calls
• Futures enable asynchronous communication

⇒ ASPfun avoids deadlocks when accessing futures

4

ASPfun

ASPfun: at a glance

5

ASPfun

ASPfun: at a glance

5

ASPfun

ASPfun: at a glance

5

Informal semantics of ASPfun

Local (ς-calculus) and parallel (configuration) semantics
• LOCAL: reduction→ς of ς-calculus.
• ACTIVE: Active(t) creates a new activity α[∅, t] for new

name α, empty request queue, and with t as active object.
• REQUEST: method call β.l creates new future fk in

future-list of activity β.
• REPLY: returns result, i.e. replaces future fk by referenced

result term s (possibly not fully evaluated).
• UPDATE-AO: activity update creates a copy of activity and

updates active object of copy – original remains the same
(immutable).

6

Language development in Isabelle/HOL

• Isabelle/HOL: interactive
theorem prover for HOL

• Generic theorem prover
• Formalization of arbitrary

object logics
• Interactive proof, tactic support
• Notation close to paper style

• We completely formalized syntax, semantics, and type
system of ASPfun, and proved language properties.

• Proof of type safety for ASPfun: preservation and progress
(deadlock freedom)

7

Example: service broker

Customer reserves a hotel using a broker

8

Example: service broker
Customer reserves a hotel using a broker

[find = ς(x,date)
hotel.room(date)]

[room = ς(x,date)
bookingref]

broker.find(date)

t

...

customer

broker

hotel

8

Example: service broker
Customer reserves a hotel using a broker

[find = ς(x,date)
hotel.room(date)]

[room = ς(x,date)
bookingref]

f1

t

...

customer

broker

hotel

hotel.room(date)

8

Example: service broker
Customer reserves a hotel using a broker

[find = ς(x,date)
hotel.room(date)]

[room = ς(x,date)
bookingref]

f1

t

...

customer

broker

hotel

f2

bookingref

8

Example: service broker
Customer reserves a hotel using a broker

[find = ς(x,date)
hotel.room(date)]

[room = ς(x,date)
bookingref]

f2

t

...

customer

broker

hotel

f2

bookingref

8

Example: service broker
Customer reserves a hotel using a broker

[find = ς(x,date)
hotel.room(date)]

[room = ς(x,date)
bookingref]

bookingref

t

...

customer

broker

hotel

f2

bookingref

8

Observations

• Service broker has a private domain of hotel addresses,
negotiates and only replies selected hotel or bookingref to
customer.

• Client receives bookingref using f2 without viewing details
of the hotel nor others from broker’s domain.

• It would be nice if the reply bookingref would also be
private to customer, but . . .

9

Example: service broker
. . . broker has also f2 and can thus get customer’s bookingref.

[find = ς(x,date)
hotel.room(date)]

[room = ς(x,date)
bookingref]

bookingref

t

...

customer

broker

hotel

f2

bookingref

10

Example: service broker
. . . broker has also f2 and can thus get customer’s bookingref.

[find = ς(x,date)
hotel.room(date)]

[room = ς(x,date)
bookingref]

bookingref

t

...

customer

broker

hotel

bookingref

bookingref

10

Function Replies for Privacy

• Idea: avoid communication of private data
=⇒ Use the reply of functions in ASPfun

• Example broker with private parameter date
• Client requests booking without disclosing parameter date
• Hotel returns function y → bookingref to client
• Client calculates his individual bookingref by supplying

parameter date afterwards

11

Private Hotel Reservation

[find = ς(x)hotel.room]

[room = ς(x)
 y → bookingref]

broker.find(date)

t

...

customer

broker

hotel

12

Private Hotel Reservation

[find = ς(x)hotel.room]

[room = ς(x)
 y → bookingref]

f1(date)

t

...

customer

broker

hotel
hotel.room

12

Private Hotel Reservation

[find = ς(x)hotel.room]

[room = ς(x)
 y → bookingref]

f1(date)

t

...

customer

broker

hotel
f2

y → bookingref

12

Private Hotel Reservation

[find = ς(x)hotel.room]

[room = ς(x)
 y → bookingref]

f2(date)

t

...

customer

broker

hotel
f2

y → bookingref

12

Stock Taking

• Two versions of broker example:
1. broker preserves his privacy (futures)
2. customer can keep his data private as well (currying)

• Private booking 2. uses currying, so is data secure?
=⇒ Implementation of ASPfun in Erlang supports currying
• Can we provide analysis support for privacy?

=⇒ (Language Based) Information Flow Control for ASPfun

13

Contribution

• Formal definitions for ASPfun of:
• Hiding of object labels ∆ in object o: o \∆
• Noninterference (formal definition of information flow

security) based on hiding

=⇒ Currying is a means for privacy enforcement
=⇒ Prove formally “No information flow to public” in curried

broker example using formal definitions
but Tedious analysis of all possible program evaluations

=⇒ Define type systems for efficient security verification

14

Conclusions

• ASPENDFG: Security analysis of distributed active objects
• Co-development of a new language ASPfun in Isabelle/HOL
• Isabelle/HOL: type safe and deadlock free
• Erlang interpreter prototype of ASPfun

• Broker example illustrates privacy enforcement
• Information flow control to analyse security: expensive

analysis (type systems)
• Outlook: LB-MAKS for ASPfun: compositionality of security

properties

15

Current papers
[1] L. Henrio, F. Kammüller. A Mechanized Model of the Theory of Objects.

Formal Methods for Open Object-Based Distributed Systems,
FMOODS’07. LNCS 4468, 2007.

[2] F. Kammüller. Formalizing Noninterference for Bytecode in Coq. Formal
Aspects of Computing: 20(3):259–275. Springer, 2008.

[3] L. Henrio and F. Kammüller. Functional Active Objects: Typing and
Formalisation. Foundations of Coordination Languages and System
Architectures, FOCLASA’09. Satellite to ICALP’09. ENTCS, 2009. Also
invited to Science of Computer Programming.

[4] F. Kammüller and R. Kammüller. Enhancing Privacy Implementations of
Database Enquiries. The Fourth International Conference on Internet
Monitoring and Protection. IEEE, 2009. Also Int. Journal on Advances
in Security 2(2 + 3), 2009.

[5] F. Kammüller. Using Functional Active Objects to Enforce Privacy. 5th
Conf. on Network Architectures and Information Systems Security.
Menton, 2010.

[6] A. Fleck and F. Kammüller. Implementing Privacy with Erlang Active
Objects Int. Conference on Internet Monitoring and Protection. 2010.

[7] F. Kammüller. Privacy Enforcement and Analysis for Functional Active
Objects. 5th International Workshop on Data Privacy Management,
DPM2010, co-located with ESORICS 2010.16

	ASPfun
	Example for ASPfun: Service Triangle
	Privacy Enforcement and Analysis

