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Motivation and goals

• Language analysis with interactive theorem provers (HOL)
“Killer-Application” (Java, C)

• We develop new language ASPfun in Isabelle/HOL:
calculus of functional, active objects, distributed, plus
typing

=⇒ Explore language based security for distributed active
objects;

=⇒ Enforce and analyse privacy by flexible parameterization
(currying)

=⇒ Long-term goal: Language based assembly kit for
distributed security (LB-MAKS)
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Overview

1 ASPfun

2 Example for ASPfun: Service Triangle

3 Privacy Enforcement and Analysis
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ASPfun – Asynchronous Sequential Processes –
functional

• ProActive (Inria/ActiveEON): Java API for active objects

• New calculus ASPfun for ProActive
• Asynchronous communication with Futures

• Futures are promises to results of method calls
• Futures enable asynchronous communication

⇒ ASPfun avoids deadlocks when accessing futures
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ASPfun

ASPfun: at a glance
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ASPfun

ASPfun: at a glance
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ASPfun

ASPfun: at a glance
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Informal semantics of ASPfun

Local (ς-calculus) and parallel (configuration) semantics
• LOCAL: reduction→ς of ς-calculus.
• ACTIVE: Active(t) creates a new activity α[∅, t ] for new

name α, empty request queue, and with t as active object.
• REQUEST: method call β.l creates new future fk in

future-list of activity β.
• REPLY: returns result, i.e. replaces future fk by referenced

result term s (possibly not fully evaluated).
• UPDATE-AO: activity update creates a copy of activity and

updates active object of copy – original remains the same
(immutable).
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Language development in Isabelle/HOL

• Isabelle/HOL: interactive
theorem prover for HOL

• Generic theorem prover
• Formalization of arbitrary

object logics
• Interactive proof, tactic support
• Notation close to paper style

• We completely formalized syntax, semantics, and type
system of ASPfun, and proved language properties.

• Proof of type safety for ASPfun: preservation and progress
(deadlock freedom)
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Example: service broker

Customer reserves a hotel using a broker
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Example: service broker
Customer reserves a hotel using a broker

[find = ς(x,date)
hotel.room(date)]

[room = ς(x,date)
bookingref]

broker.find(date)

t

...

customer

broker

hotel
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Example: service broker
Customer reserves a hotel using a broker

[find = ς(x,date)
hotel.room(date)]

[room = ς(x,date)
bookingref]

f1

t

...

customer

broker

hotel

hotel.room(date)
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Example: service broker
Customer reserves a hotel using a broker

[find = ς(x,date)
hotel.room(date)]

[room = ς(x,date)
bookingref]

f1

t

...

customer

broker

hotel

f2

bookingref
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Example: service broker
Customer reserves a hotel using a broker

[find = ς(x,date)
hotel.room(date)]

[room = ς(x,date)
bookingref]

f2

t

...

customer

broker

hotel

f2

bookingref
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Example: service broker
Customer reserves a hotel using a broker

[find = ς(x,date)
hotel.room(date)]

[room = ς(x,date)
bookingref]

bookingref

t

...

customer

broker

hotel

f2

bookingref
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Observations

• Service broker has a private domain of hotel addresses,
negotiates and only replies selected hotel or bookingref to
customer.

• Client receives bookingref using f2 without viewing details
of the hotel nor others from broker’s domain.

• It would be nice if the reply bookingref would also be
private to customer, but . . .
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Example: service broker
. . . broker has also f2 and can thus get customer’s bookingref.

[find = ς(x,date)
hotel.room(date)]

[room = ς(x,date)
bookingref]

bookingref

t

...

customer

broker

hotel

f2

bookingref
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Example: service broker
. . . broker has also f2 and can thus get customer’s bookingref.

[find = ς(x,date)
hotel.room(date)]

[room = ς(x,date)
bookingref]

bookingref

t

...

customer

broker

hotel

bookingref

bookingref
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Function Replies for Privacy

• Idea: avoid communication of private data
=⇒ Use the reply of functions in ASPfun

• Example broker with private parameter date
• Client requests booking without disclosing parameter date
• Hotel returns function y → bookingref to client
• Client calculates his individual bookingref by supplying

parameter date afterwards

11



Private Hotel Reservation

[find = ς(x)hotel.room]

[room = ς(x) 
        y → bookingref]

broker.find(date)

t

...

customer

broker

hotel
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Private Hotel Reservation

[find = ς(x)hotel.room]

[room = ς(x) 
        y → bookingref]

f1(date)

t

...

customer

broker

hotel
hotel.room
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Private Hotel Reservation

[find = ς(x)hotel.room]

[room = ς(x) 
        y → bookingref]

f1(date)

t

...

customer

broker

hotel
f2

y → bookingref
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Private Hotel Reservation

[find = ς(x)hotel.room]

[room = ς(x) 
        y → bookingref]

f2(date)

t

...

customer

broker

hotel
f2

y → bookingref
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Stock Taking

• Two versions of broker example:
1. broker preserves his privacy (futures)
2. customer can keep his data private as well (currying)

• Private booking 2. uses currying, so is data secure?
=⇒ Implementation of ASPfun in Erlang supports currying
• Can we provide analysis support for privacy?

=⇒ (Language Based) Information Flow Control for ASPfun
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Contribution

• Formal definitions for ASPfun of:
• Hiding of object labels ∆ in object o: o \∆
• Noninterference (formal definition of information flow

security) based on hiding

=⇒ Currying is a means for privacy enforcement
=⇒ Prove formally “No information flow to public” in curried

broker example using formal definitions
but Tedious analysis of all possible program evaluations

=⇒ Define type systems for efficient security verification
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Conclusions

• ASPENDFG: Security analysis of distributed active objects
• Co-development of a new language ASPfun in Isabelle/HOL
• Isabelle/HOL: type safe and deadlock free
• Erlang interpreter prototype of ASPfun

• Broker example illustrates privacy enforcement
• Information flow control to analyse security: expensive

analysis (type systems)
• Outlook: LB-MAKS for ASPfun: compositionality of security

properties
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