
Middlesex University Research Repository
An open access repository of

Middlesex University research

http://eprints.mdx.ac.uk

Clark, Tony and D’Souza, Desmond (2001) A translational semantics for UML. Technical
Report. King’s College. . [Monograph]

This version is available at: https://eprints.mdx.ac.uk/6281/

Copyright:

Middlesex University Research Repository makes the University’s research available electronically.

Copyright and moral rights to this work are retained by the author and/or other copyright owners
unless otherwise stated. The work is supplied on the understanding that any use for commercial gain
is strictly forbidden. A copy may be downloaded for personal, non-commercial, research or study
without prior permission and without charge.

Works, including theses and research projects, may not be reproduced in any format or medium, or
extensive quotations taken from them, or their content changed in any way, without first obtaining
permission in writing from the copyright holder(s). They may not be sold or exploited commercially in
any format or medium without the prior written permission of the copyright holder(s).

Full bibliographic details must be given when referring to, or quoting from full items including the
author’s name, the title of the work, publication details where relevant (place, publisher, date), pag-
ination, and for theses or dissertations the awarding institution, the degree type awarded, and the
date of the award.

If you believe that any material held in the repository infringes copyright law, please contact the
Repository Team at Middlesex University via the following email address:

eprints@mdx.ac.uk

The item will be removed from the repository while any claim is being investigated.

See also repository copyright: re-use policy: http://eprints.mdx.ac.uk/policies.html#copy

http://eprints.mdx.ac.uk
https://eprints.mdx.ac.uk/6281/
mailto:eprints@mdx.ac.uk
http://eprints.mdx.ac.uk/policies.html#copy

20/11/01

A Translational Semantics for UML 20 November 2001 (Draft in Progress) 1

A Translational Semantics for UML

Tony Clark
Desmond D’Souza

1.0 Overview

We propose a very small semantic domain for UML and show how all syntactic con-
structs can translate to this domain. The translations are layered thereby supporting the
incremental definition of new modelling constructs whose meanings can be understood
in terms of lower level modelling constructs.

The aim is to show how an approach that extends both syntax and semantics by adding
new entities by specialization can co-exist with a translational approach. This is impor-
tant for several reasons.

• Consistency and understandability: The larger language can be understood in terms
of a small core. UML 2.0 might turn out to be a very large language, even without
the scores of profiles that are waiting in the wings.

• Model interchange: a tool which natively supports more sophisticated language con-
structs can still exchange models with a tool which understands only the simpler
translated constructs.

• Extensibility: New language constructs, whether “lightweight” or “heavyweight”,
can be defined as (a) brand new elements; (b) elements that translate into the base
language, or (c) both, so a tool can choose to use the most appropriate one.

1.1 Table of contents

1.0 Overview.. 1

2.0 Semantic Domain... 1

3.0 A Simple Language ... 2

4.0 UML Features.. 2
4.1 Classes ... 2

4.1.1 Class Attributes... 3
4.1.2 Static Invariants .. 4
4.1.3 Operations... 4
4.1.4 Dynamic Invariants... 5
4.1.5 Class Constants... 6

4.2 Packages .. 7
4.2.1 Contents .. 7
4.2.2 Package Attributes .. 8
4.2.3 Static Invariants .. 8
4.2.4 Operations... 9
4.2.5 Dynamic Invariants..11

4.3 Objects ..11

4.4 Package and Class Equivalences ..11

4.5 State Machines... 12

4.6 Collaboration Diagrams .. 13

20/11/01

A Translational Semantics for UML 20 November 2001 (Draft in Progress) 2

4.7 Sequence Diagrams ... 13

4.8 Package Specialization .. 13

4.9 Templates... 13

2.0 Semantic Domain

A UML model for:
• Object a container of slots with an id and a classifier (class).
• Slot a named object.
• ObjectStep between two objects with the same id.
• ObjectFilmStrip a container of object steps.
• Snapshot a container of objects with an id and a classifier (package).
• SnapshotStep between two snapshots with the same id.
• SnapshotFilmStrip a container of snapshot steps.

For each semantic domain element there is a set of the freely constructed model ele-
ments, for example: Objects and Snapshots.

The following is a model of the semantic domain. Some features have been simplified,
for example if we have a model of name spaces then names (and possibly object identi-
ties) may be defined differently. Slots could have corresponding SlotStep and SlotFilm-
Strip classes. These issues will get tidied up when this model is generated from
templates.

The above model does not show how objects are classified. All objects are linked to
their classifier via an association. The end linked to the classifier is named ‘of’. In the
proposed model, since everything is an object this association goes from Object to
itself (or to a suitably specialized version of itself). Similarly, steps are linked to opera-
tions by a link named ‘of’.

The above model is incomplete. In particular it does not show the properties of film-
strips. This is because the list of properties has yet to be finalised however we are likely
to have an initial starting state (possibly more than one?) for a filmstrip; given a state in
a filmstrip we can ask for all possible subsequent states; and given a step we can ask
for all subsequent steps.

Every object has a method ‘isKindOf’. The result o.IsKindOf(C) where o is an object
and C is a classifier (also an object) is true when o.of = C or when C inherits from o.of.
The method is not defined here (but should not cause any problem).

ObjectFilmStrip

*

SnapshotFilmStrip

*

+id : Integer

Object

+name : String

Slot

* *

-value

ObjectStep
-pre

-post

+id : Integer

Snapshot

*

*

SnapshotStep
-pre

-post

20/11/01

A Translational Semantics for UML 20 November 2001 (Draft in Progress) 3

3.0 A Simple Language

Objects are represented by an object expression (like an instance diagram element):

object :C name = exp; name = exp; ...; name = exp end

Expressions may also be OCL. All expressions denote semantic domain elements. C is
the classifier of the object (the value of the slot named ‘of’). C is an expression that
denotes an object.

4.0 UML Features

This section shows how many static and dynamic UML features can be translated to
expressions in the simple language. In all cases we assume a simple textual language
for expressing models.

4.1 Classes

A class is an object that expresses structural and behavioural information. By default, a
class object is an instance of the meta-class named Class. The dynamic instances of a
default type of class are filmstrips that express steps between objects that are static
instances of the class.

The class definition on the left denotes an object of type Class on the right with the
given name. All static instances of C are objects whose classifier is C. The method
‘isKindOf’ permits the most specific classifier of o to be a sub-class of C.

4.1.1 Class Attributes

Attributes (aka variables) define structural features of classes. An attribute definition is

a constraint that the instances of the class should all have the slot whose value is of the
appropriate type. In addition to the static instances, a class will have a slot that con-

class C
end

C =
object :Class

name = ‘C’;
staticInstances =

Objects->select(o |
o.isKindOf(C))

end

class C
x:Integer

end

C =
object :Class

name = ‘C’;
staticInstances =

Objects->select(o |
o.isKindOf(C) and
o.slots.names->includes(‘x’) and
o.x.isKindOf(Integer))

end

20/11/01

A Translational Semantics for UML 20 November 2001 (Draft in Progress) 4

tains all its attributes. Since this is quite verbose and mechanical it is shown once
below and then elided from the following examples.

4.1.2 Static Invariants

A static class invariant defines a property that must hold for all static instances of the
class. A static instance of a class is an object.

class C
x:Integer

end

C =
object :Class

name = ‘C’;
attributes = Set{

object :Attribute
name = ‘x’;

type = Integer;
class = C

end;
staticInstances =

Objects->select(o |
o.isKindOf(C) and
o.slots.names->includes(‘x’) and
o.x.isKindOf(Integer))

end

class C
x : Integer
static
self.x > 10

end

C =
object :Class

name = ‘C’;
staticInstances =

Objects->select(o |
o.isKindOf(C) and
o.slots.names->includes(‘x’) and
o.a.isKindOf(Integer) and
o.x > 10)

end

20/11/01

A Translational Semantics for UML 20 November 2001 (Draft in Progress) 5

4.1.3 Operations

Class operations are named. Other information about the operation is optional. The fol-
lowing example shows a simple class operation named ‘m’. An operation places con-

straints on the dynamic instances of a class. Each dynamic instance is an object
filmstrip whose steps represent state changes to instances of the class. Note that the
static instances can then be derived from the dynamic instances. Like attributes, opera-
tions are represented as objects contained by the class. We do not restrict the temporal
relationships between object steps.

Operations may be specified in terms of pre and post conditions. Such an operation has

instances that are steps for which the pre state must satisfy the precondition and the

class C
m()

end

O =
object :Operation

name = ‘m’;
args = Seq{};
class = C

end

C =
object :Class

name = ‘C’;
operations = Set{O};
dynamicInstances =

ObjectFilmStrips->select(f |
f.steps->forAll(s |

s.pre.isKindOf(C) and
s.post.isKindOf(C) and

s.pre.id = s.post.id and
s.of = O));

staticInstances =
C.dynamicInstances.steps.pre->union(

C.dynamicInstances.steps.post)
end

class C
x:Integer;
m(y:Integer)

pre
true

post
x = x@pre + y

end

O = ...
C =

object :Class
name = ‘C’;
operations = Set{O};
dynamicInstances =

ObjectFilmStrips->select(f |
f.steps->forAll(s |

C.staticInstances->includes(s.pre)and
C.staticInstances->includes(s.post) and
s.pre.id = s.post.id and
s.of = O implies
s.argNamed(‘y’).isKindOf(Integer) implies

s.post.x = s.pre.x + s.argNamed(‘y’)));
staticInstances =

Objects->select(o |
o.isKindOf(C) and
o.slots.names->includes(‘x’) and
o.x.isKindOf(Integer))

end

20/11/01

A Translational Semantics for UML 20 November 2001 (Draft in Progress) 6

post state must satisfy the postcondition. In general, given a precondition p and post-
condition q, the truth of the precondition implies the truth of the postcondition:

4.1.4 Dynamic Invariants

A class dynamic invariant expresses a constraint on the dynamic behaviour of the class
instances. An ObjectFilmStrip is an historical record of the behaviour of a particular
object. In order for an object filmstrip to be a well formed dynamic instance of a class
the filmstrip must satisfy the dynamic invariant of the class.

A class dynamic invariant is an OCL expression in which ‘self’ is an object filmstrip.

The invariant can express a constraint on any part of the behaviour represented by the
filmstrip.

In general we may require a rich language of constraints on operations that allow us to
express epochs of time such as ‘during the execution of this operation’ and ‘before this
operation’ and ‘between these two operations’. Such language features will all translate
onto the basic notion of dynamic invariant.

class C
m()

pre p
post q

end

O = ...
C =

object :Class
name = ‘C’;
operations = Set{O};
dynamicInstances =

ObjectFilmStrips->select(f |
f.steps->forAll(s |

C.staticInstances->includes(s.pre)and
C.staticInstances->includes(s.post) and
s.of = O implies

p[s.pre/self] implies
q[s.post/self,s.pre/self@pre])

staticInstances =
Objects->select(o |

o.isKindOf(C))
end

class C
x:Integer;
m(y:Integer)
dynamic

steps->forAll(s |
s.name = ‘m’ implies
s.post.x = s.pre.x +

s.argNamed(‘y’))
end

O = ...
C =

object :Class
name = ‘C’;
dynamicInstances =

ObjectFilmStrips->select(f |
f.steps->forAll(s |

C.staticInstances->includes(s.pre)and
C.staticInstances->includes(s.post) and

s.pre.id = s.post.id and
s.of = O
s.post.x = s.pre.x + s.argNamed(‘y’)));

staticInstances =
Objects->select(o |

o.isKindOf(C) and
o.slots.names->includes(‘x’) and
o.x.isKindOf(Integer))

end

20/11/01

A Translational Semantics for UML 20 November 2001 (Draft in Progress) 7

4.1.5 Class Constants

There are at least two variations on the theme of constant-hood: a slot value may be
constant throughout all instances of a classifier; a slot value may not be changed
throughout the life-time of a given instance (but the value may differ between
instances). The former is similar to the static declaration in Java and the latter is simi-

lar to final in Java (or const in Pascal-like languages).

The table above shows a static declaration in a class. The value of the slot named ‘x’ in
all instances must be the same but may change over time. If any of the instances
changes the value then it changes in all instances. Note that since we don’t know the
particular value of the slot named ‘x’ then it is selected at random. We say nothing
about the dynamic instances of the class C; therefore the value of ‘x’ may change but
the static invariant must be satisfied.

A constant definition in a class must be expressed in terms of the dynamic instances:

The slot named ‘x’ can be any value but the value must not change throughout the life-
time of the object. Different objects may have different values for ‘x’.

4.2 Packages

A package is a container of classes and sub-packages. A package may be a specializa-
tion of another package (this issue is not addressed here). The static instances of a

class C
static x:Integer

end

C =
let x = Integer.selectElement()
in object :Class

name = ‘C’;
staticInstances =

Objects->select(o |
o.isKindOf(C) and
o.slots.names->includes(‘x’) and
o.x.isKindOf(Integer) and
o.x = x)

end
end

class C
const x:Integer

end

C =
let x = Integer.selectElement()
in object :Class

name = ‘C’;
dynamicInstances =

ObjectFilmStrips->select(f |
f.steps->forAll(s |

s.pre.x = x and
s.post.x = x))

end
end

20/11/01

A Translational Semantics for UML 20 November 2001 (Draft in Progress) 8

package are snapshots that must contain instances (1+?) of (only?) the classifiers con-
tained in the package:

4.2.1 Contents

The contents of a package are represented directly as a slot in the package object. Each
contained element must have a slot leading back to its container:

package P
end

P =
object :Package

name = ‘P’;
staticInstances =

Snapshots->select(s |
s.isKindOf(P))

end

package P
class C end

end

C =
object :Class

name = ‘C’;
package = P;
staticInstances =

Objects->select(o |
o.isKindOf(C))

end

P =
object :Package

name = ‘P’;
classes = Set{C};
staticInstances =

Snapshots->select(s |
s.isKindOf(P) and
s.slots.names->includes(‘C’) and
s.contents->includesAll(s.C) and
s.C->forAll(c |

C.staticInstances->includes(c)))
end

20/11/01

A Translational Semantics for UML 20 November 2001 (Draft in Progress) 9

4.2.2 Package Attributes

Like classes, packages can have attribute definitions. This leads to appropriate slots in
the static instances of the package as shown on the right:

The attributes of a package may be defined static and const. These are treated in the
same manner as the equivalent declarations in classes. The only difference between
class attribute and package attributes is one of scope. In a class the attributes are lim-
ited to the objects which are instances of the class. In a package attributes are available
to all the definitions in the package; therefore, instances of two otherwise non-related
classes in a package can communicate through a package-level attribute.

4.2.3 Static Invariants

Like classes, packages can have static invariants. The invariant may apply to package
attributes as shown on the left:

package P
x:Integer

end

P =
object :Package

name = ‘P’;
classes = Set{};
staticInstances =

Snapshots->select(s |
s.isKindOf(P) and
s.slots.names->includes(‘x’) and
s.x.isKindOf(Integer))

end

package P
x:Integer
static

x > 10
end

P =
object :Package

name = ‘P’;
classes = Set{};
staticInstances =

Snapshots->select(s |
s.isKindOf(P) and
s.slots.names->includes(‘x’) and
s.x.isKindOf(Integer) and
s.x > 10)

end

20/11/01

A Translational Semantics for UML 20 November 2001 (Draft in Progress) 10

4.2.4 Operations

A package operation is essentially the same as a class operation except where a class
operation gives rise to steps betwen objects, a package operation gives rise to steps
between snapshots.

package P
class C

x:Integer
end;
class D

y:Integer
end
static

C->forAll(c |
D->exists(d |

c.x > d.y))
end

The package definition on the left
shows how package level static
invariants provide more expres-
sive power than class level static
invariants by themselves. The
invariant requires that in any legal
snapshot of P there must exist an
instance of D whose ‘y’-value is
lower than all the ‘x’values of
instances of C in the same snap-
shot.

package P
m()

end

O = ...
P =

object :Package
name = ‘P’;
operations = Set{O};
dynamicInstances =

SnapshotFilmStrips->select(f |
f.steps->forAll(s |

s.pre.isKindOf(P) and
s.post.isKindOf(P) and
s.of = O));

staticInstances =
P.dynamicInstances.steps.pre->union(

P.dynamicInstances.steps.post)
end

20/11/01

A Translational Semantics for UML 20 November 2001 (Draft in Progress) 11

Package operations may be specified using pre and post conditions. They are more

expressive than class level operation specifications because they can refer to the entire
snapshot rather than a single instance. The class on the left shows how creation and
deletion methods can be specified.

The following is another example of a package level operation that involves concur-
rently swapping slot values:

package P
class C end;
createC():C

pre true
post

(C - C@pre)->size = 1
result = C - C@pre;

killC(c:C)
pre C->includes(c)
post
(C@pre - C) = Set{c}

end

CreateC = ...
KillC = ...
P =

object :Package
name = ‘P’;
classes = Set{C};
operations = Set{CreateC,KillC};
dynamicInstances =

SnapshotFilmStrips->select(f |
f.steps->forAll(s |

s.pre.isKindOf(P) and
s.post.isKindOf(P) and
s.name = CreateC implies

(s.post.C - s.pre.C)->size = 1 and
s.result = s.post.C - s.pre.C and

s.of = KillC implies
s.pre.C->includes(s.argNamed(‘c’))

and (s.pre.C - s.post.C) =
Set{s.argNamed(‘c’)});

staticInstances =
P.dynamicInstances.steps.pre->union(

P.dynamicInstances.steps.post)
end

package P
class C
x:Integer

end;
class D
y:Integer

end;
m(c:C,d:D)

pre
C->includes(c) and
D->includes(d)

post
C->exists(c’ | c’.id = c.id and
D->exists(d’ | d’.id = d.id and

c’.x = d.y and
d’.y = c.x)))

end

20/11/01

A Translational Semantics for UML 20 November 2001 (Draft in Progress) 12

4.2.5 Dynamic Invariants

4.3 Objects

The semantic domain represents an abstract ideal. We can capture views of this ideal
on object diagrams (and activity diagrams, collaboration diagrams and interaction dia-
grams etc) in UML. Snapshots are static instances of packages. Object diagrams (the
concrete syntax for snapshots) are partial views of snapshots, and may be used as
examples, counter examples, or, with the right quantifiers, as specifications.

Given an object diagram O which claims to be an instance of a package P we can con-
struct the most specific package P’ such that O is a most specific instance of P’ then the
claim that O:P is justified when P’ statically conforms to P. Package static conformance
is essentially signature conformance and can be defined in terms of the static conform-
ance of the package contents. This has yet to be defined.

4.4 Package and Class Equivalences

The translational approach defines a relationship between syntax constructs at different
levels of abstraction. This induces relationships between syntax constructs at the same

package P
class C
x:Integer

end;
class D
y:Integer

end;
dynamic
start.C->forAll(c |

start.D->forAll(d |
c.x = d.y) and

subsequently(start)->
forAll(s |

s.C->forAll(c |
not s.D->exists(d |

c.x = d.y)))
end

Package level
dynamic constraints
apply to snapshot
filmstrips and can
therefore range over
all the steps from the
beginning of a com-
putation. The package
on the left requires
the values of all
instances of C and D
to agree on their ‘x’
and ‘y’ slots respec-
tively. In all subse-
quent snapshots the
values of these slots
must be different.
Therefore it requires
something to have
happened in the initial
step to change their
values.

C = ...
D = ...
P =

object :Package
name = ‘P’;
dynamicInstances =

SnapshotFilmStrips->select(f |
f.steps->forAll(s |

s.pre.isKindOf(P) and
s.post.isKindOf(P)) and

f.start.C->forAll(c |
f.start.D->forAll(d |
c.x = d.y)) and

f.subsequently(f.start)->forAll(s |
s.C->forAll(c |

not s.D->exists(d |
c.x = d.y)));

staticInstances =
P.dynamicInstances.steps.pre->union(

P.dynamicInstances.steps.post)
end

20/11/01

A Translational Semantics for UML 20 November 2001 (Draft in Progress) 13

level of abstraction and allows us to show whether or not two different definitions are
equivalent. The following are a few examples.

4.5 State Machines

Translation or desugaring may be performed in stages. for example suppose we want a
language of simple state machines. The syntactic extension on the left has a semantics
in terms of a translation to the class definition on the right. The states become boolean

package P
class C
x:Integer

end
end

Defining a class
attribute is equiva-
lent to a pair of
package opera-
tions. The snap-
shot filmstrip
operator ‘between’
takes 2 args: a step
s and a predicate
and returns all the
steps from s until
the predicate is
true. The operator
‘nextsetXFor’
takes an object and
returns a predicate
that returns true
when supplied with
a step labelled with
a ‘setX’ operation
whose first arg is
the object.

package P
class C
end;
getX(c:C):Integer
setX(c:C,x:Integer)
dynamic
steps->forAll(s |

s.name = ‘setX’ implies
between(s,nextsetXFor(s.argNamed(‘c’)))->forAll(s’ |

s’.name = ‘getX’ implies s’.result = s.argNamed(‘x’)))
static
C->forall(c | c.x > 10)

end

package P
class C
x:Integer
static
x > 10

end
end

Is equivalent to: package P
class C
x:Integer

end
static
C->forall(c | c.x > 10)

end

package P
class C
x:Integer;
m()

pre true
post

x = x@pre + 1
end

end

Is equivalent to: package P
class C

x:Integer
end;
m(c:C)

pre C->includes(c)
post

C->exists(c’ |
c’.id = c.id and
c’.x = c.x + 1)

end

20/11/01

A Translational Semantics for UML 20 November 2001 (Draft in Progress) 14

variables and the transitions become dynamic invariants. The class definition on the
right, in turn, has a semantics in terms of an object expression.

Next add guards, next add actions.

4.6 Activity Diagrams

We could use activity diagrams as the basic way to compose behavior specs (expres-
sions in the action language) and collab and sequence diagrams as special cases.

4.7 Collaboration Diagrams

4.8 Sequence Diagrams

4.9 Package Specialization

4.10 Templates

class C
states s1, s2
transitions
t1: s1 -> s2

end

class C
s1:Boolean;
s2:Boolean;
static
s1 xor s2

dynamic
steps->forAll(s |

s.pre.s1 and s.name = ‘t1’ implies
s.post.s2)

end

	A Translational Semantics for UML
	1.0 Overview
	1.1 Table of contents

	2.0 Semantic Domain
	3.0 A Simple Language
	4.0 UML Features
	4.1 Classes
	4.1.1 Class Attributes
	4.1.2 Static Invariants
	4.1.3 Operations
	4.1.4 Dynamic Invariants
	4.1.5 Class Constants

	4.2 Packages
	4.2.1 Contents
	4.2.2 Package Attributes
	4.2.3 Static Invariants
	4.2.4 Operations
	4.2.5 Dynamic Invariants

	4.3 Objects
	4.4 Package and Class Equivalences
	4.5 State Machines
	4.6 Activity Diagrams
	4.7 Collaboration Diagrams
	4.8 Sequence Diagrams
	4.9 Package Specialization
	4.10 Templates

