
This version is available at: https://eprints.mdx.ac.uk/6067/

Copyright:

Middlesex University Research Repository makes the University's research available electronically.

Copyright and moral rights to this work are retained by the author and/or other copyright owners unless otherwise stated. The work is supplied on the understanding that any use for commercial gain is strictly forbidden. A copy may be downloaded for personal, non-commercial, research or study without prior permission and without charge.

Works, including theses and research projects, may not be reproduced in any format or medium, or extensive quotations taken from them, or their content changed in any way, without first obtaining permission in writing from the copyright holder(s). They may not be sold or exploited commercially in any format or medium without the prior written permission of the copyright holder(s).

Full bibliographic details must be given when referring to, or quoting from full items including the author's name, the title of the work, publication details where relevant (place, publisher, date), pagination, and for theses or dissertations the awarding institution, the degree type awarded, and the date of the award.

If you believe that any material held in the repository infringes copyright law, please contact the Repository Team at Middlesex University via the following email address:

eprints@mdx.ac.uk

The item will be removed from the repository while any claim is being investigated.

See also repository copyright: re-use policy: http://eprints.mdx.ac.uk/policies.html#copy
Purine metabolite levels in preovulatory human follicles may hold the key to ovarian hyperstimulation syndrome

To the Editor:

We are in agreement with Valerio Napolioni that adenosine’s importance in reproductive biology may be wider and more variable than the association with energy charge that we describe. Indeed, we feel that the potent pharmacology of this purine may be unwelcome under emerging circumstances. Tremendous progress has been made in assisted reproductive technology since the birth of the first baby in 1978 by in vitro fertilization (IVF). The development of intracytoplasmic sperm injection in the early 1990s further increased the pregnancy and live birth rates [1]; nonetheless, a serious iatrogenic illness arose from this technology in the form of ovarian hyperstimulation syndrome (OHSS). This is experienced by approximately 5% to 10% of women undergoing IVF; and the clinical symptoms of OHSS are graded mild, moderate, and severe. Mild symptoms include abdominal bloating and feeling of fullness, nausea, diarrhea, and slight weight gain. The progression to moderate symptoms is defined by excessive weight gain (weight gain of >2 lb/d), increased abdominal girth, vomiting, diarrhea, concentrated urine, and excessive thirst. Severe symptoms are marked abdominal distension due to ascites, pulmonary edema, and chest pain [2].

The molecular cause of OHSS has been put down to a soluble factor found to be produced by multiple follicles that arise as a result of deliberate ovarian stimulation. Research into follicular fluid has been undertaken in many different ways: immunoassays for specific molecules or hormones [3-5], proteomic studies by 2-dimensional electrophoresis and mass spectrometry analysis [6], and granulosa cell messenger RNA quantification for inhibit-activin-follistatin system by polymerase chain reaction [7]. The primary focus in the search for the molecular agent responsible for OHSS has centered on vascular endothelial growth factor (VEGF), perhaps because of our current preoccupation with genes and proteins rather than smaller potent bioactive molecules.

There is a presumption that VEGF levels are supraphysiologic in follicular fluid and will cause local blood vessels to become leaky [2]. Unfortunately, VEGF levels are not particularly elevated in follicular fluid compared with other sources [8]. However, smaller vasodilatory purine metabolites are present in follicular fluid in abundance [9]. In the 1980s, Downs et al [10] studied their roles as meiotic inhibitors (in mice predominantly). Later, Lavy et al [11], studying purine metabolite levels in human follicles from both natural and stimulated cycles, claimed that adenosine was the inhibitor of human oocyte maturation. In our recent study, we found that hypoxanthine levels were extremely variable, but adenosine was a consistent component, and levels were supraphysiologic—the smaller follicles contained a much greater concentration of adenosine than the larger ones [9].

Adenosine’s other biological actions make it a significant contender as the molecular cause of OHSS: adenosine is a powerful vasodilator; and when administered by intravenous infusion, it can produce substantial hypotension. Acting via adenosine A2 receptors, it induces smooth muscle relaxation, especially in the coronary circulation; but because of its extremely rapid metabolism, it is very short acting. It is common practice to infuse adenosine into coronary arteries when imaging occlusions, but it is not used clinically as a vasodilator. However, in such patients, most of adenosine’s side effects are related to its vasodilatory properties.

Furthermore, peripheral microvascular endothelia local production of vascular permeability factor/VEGF A is upregulated 2- to 3-fold by adenosine [12].

A wave of symptoms due to vasodilation and increased vessel permeability spreading from the ovaries to the abdomen and on to the lungs would be consistent with unopposed peritoneal infusion of adenosine (leaking from multiple follicles). This is prevented by adenosine deaminase, or ADA (also referred to as adenosine aminohydrolase, EC 3.5.4.4), a ubiquitous enzyme that appears to be particularly important in the development of thymocytes.

ADA converts adenosine into inosine through the hydrolysis of the purine amino group, with an estimated half-life of 1 second (Fig. 1). ADA is present in all tissues, but activity is particularly high in thymocytes of the thymic cortex. There are 2 enzymes that carry out ADA activity, called ADA1 and ADA2. ADA1 a 40-kd monomeric protein with a 200-kd noncatalytic combining protein, and it is responsible for about 90% of adenosine deamination. ADA2 is somewhat larger at 110 kd and appears to play a general adenosine deamination role in serum. Total absence of ADA activity results in a form of severe combined immunodeficiency. However, as pointed out by Valerio Napolioni, polymorphic variants have now been found with reduced rates of catalytic activity. In some circumstances, this is positively advanta-
geous. Adenosine is released by cardiomyocytes in response to ischemia and is cardioprotective in this regard [13]. Genotypic variants resulting in reduced metabolism of, or increased receptor response to, adenosine result in a phenotypic group more likely to survive ischemic events [14,15]. The question to be investigated is this: do these same genotypes result in an IVF patient phenotype prone to the development of OHSS?

Ray Kruse Iles
Suzanne M. Docherty
Biomedical Sciences
School of Health & Social Science
Middlesex University, Hendon Campus
NW4 4BT The Burroughs, UK
E-mail address: r.iles@mdx.ac.uk

doi:10.1016/j.metabol.2010.04.005

References

Dear Author,

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof. Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.

Articles in Special Issues: Please ensure that the words 'this issue' are added (in the list and text) to any references to other articles in this Special Issue.

<table>
<thead>
<tr>
<th>Uncited references: References that occur in the reference list but not in the text – please position each reference in the text or delete it from the list.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Missing references: References listed below were noted in the text but are missing from the reference list – please make the list complete or remove the references from the text.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location in article</th>
<th>Query / remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Please provide page-range here.</td>
</tr>
</tbody>
</table>

Electronic file usage

Sometimes we are unable to process the electronic file of your article and/or artwork. If this is the case, we have proceeded by:

- [] Scanning (parts of) your article
- [] Rekeying (parts of) your article
- [] Scanning the artwork

Thank you for your assistance.