
This version is available at: http://eprints.mdx.ac.uk/5661/

Copyright:

Middlesex University Research Repository makes the University's research available electronically. Copyright and moral rights to this work are retained by the author and/or other copyright owners unless otherwise stated. The work is supplied on the understanding that any use for commercial gain is strictly forbidden. A copy may be downloaded for personal, non-commercial, research or study without prior permission and without charge.

Works, including theses and research projects, may not be reproduced in any format or medium, or extensive quotations taken from them, or their content changed in any way, without first obtaining permission in writing from the copyright holder(s). They may not be sold or exploited commercially in any format or medium without the prior written permission of the copyright holder(s).

Full bibliographic details must be given when referring to, or quoting from full items including the author's name, the title of the work, publication details where relevant (place, publisher, date), pagination, and for theses or dissertations the awarding institution, the degree type awarded, and the date of the award.

If you believe that any material held in the repository infringes copyright law, please contact the Repository Team at Middlesex University via the following email address:

eprints@mdx.ac.uk

The item will be removed from the repository while any claim is being investigated.

See also repository copyright: re-use policy: http://eprints.mdx.ac.uk/policies.html#copy
THE PSYCHOLOGY OF CHOCOLATE

Dr G Neil Martin, FRSA, CSci
THE USUAL SUSPECT (S)

Figure 1
Structural skeleton of flavonoids and classification hierarchy of common flavonoids. *Flavanol is the predominate class of flavonoid found in cocoa and chocolate.
Figure 2
Flavanoid content and antioxidant capacity (ORAC) of milk chocolate and dark chocolate versus other high flavonoid foods. * Brewed, per 2 g bag/200 ml water. Antioxidant activity is reported as oxygen radical absorbance capacity (ORAC). Adapted from: Steinberg et al. J Am Diet Assoc 103: 215-23.
HOW DOES THIS AFFECT BEHAVIOUR?
- People spend longer looking at slides in the presence of chocolate aroma
- More words recalled when learning and recall take place in presence of odour
- When paired with a nice painting, picture is rated artistically better
- Consumption greater in Parkinson’s Disease (Wolz et al, 2009)
DOES CHOCOLATE EATING AFFECT MOOD?

- Apple and chocolate eating improved mood but chocolate’s effect was stronger (Macht & Dettmer, 2006)

- Chocolate eating reduced negative mood after watching sad film; no effect on positive mood (Macht & Mueller, 2007)

- Bad mood alleviated after eating palatable chocolate (up to 70% cocoa)- but effect very short-lived
Fig. 2. Self-rated mood (mean ± SEM) before and after viewing a sad film and after ingestion of palatable chocolate ($n = 38$), unpalatable chocolate ($n = 37$) or nothing ($n = 38$). *: $p<0.05$ and *: $p<0.10$ for comparisons between palatable chocolate and eating nothing; ++: $p<0.01$ and +: $p<0.10$ for comparisons between palatable and unpalatable chocolate.
HERNAN CORTES

• “just one glass was sufficient to refresh a soldier for a whole day”
AN AID TO RECOVERY?

• Cyclists cycle 49%-51% longer after milk choc ingestion (Karp et al, 2006; Thomas et al, 2009)...

• …and become exhausted less quickly (Karp et al, 2006)

• Chocolate urges reduced by exercise (Taylor & Oliver, 2009)
Fig. 2. Time to exhaustion during endurance capacity trial, following ingestion of 3 different recovery drinks. CM, chocolate milk; FR, fluid replacement drink; CR, carbohydrate replacement drink. *, Significantly different from chocolate milk.
THE NEUROPSYCHOLOGY OF CHOCOLATE

• Eating chocolate to satiety (Small et al, 2001)
• Pleasantness - orbitofrontal cortex/insula
• Satiety - different regions and decrease in OFC
• There are sex diffs (Smeets et al, 2006)
Dopamine Pathways

Frontal cortex

Nucleus accumbens

VTA

Serotonin Pathways

Striatum

Substantia nigra

Functions
- Mood
- Memory processing
- Sleep
- Cognition

Functions
- Reward (motivation)
- Pleasure, euphoria
- Motor function (fine tuning)
- Compulsion
- Perseveration
CHOCOLATE AND BRAIN ACTIVATION

Martin (1998)

EEG response to synthetic/real food odour
Fig. 1. An illustration of the 19 electrode sites employed.
ODOUR DIFFERENCES IN THETA

THETA ACTIVITY (in microvolts)

ODOUR

BLANK
ALMOND
CHOCOLATE
CUMIN
SPEARMINT
STRAWBERRY
VEGETABLE
EFFECT OF CHOCOLATE AROMA ON MOTOR BEHAVIOUR

• No effect on hand skill/co-ordination

• Participants less tense, depressed and confused
HOW DOES CHOCOLATE AFFECT ME?

- 73% - puts me in a good mood
- 60% - makes me happy
- 50% - makes my temper disappear
- 53% - makes me feel better
- 37% - makes me feel relaxed
- 63% - the smell makes me crave/want it more
- 67% - seeing somebody else eat makes me want it
- 70% - preferred the smell to cakes/sweets
PLEASURE CHART

1. GOING ON HOLIDAY
2. HAVING SEX
3. WATCHING A GOOD FILM
4. GOING FOR A WALK IN THE PARK
5. GOING TO THE BEACH
6. GOING SHOPPING
7. EATING CHOCOLATE
8. EATING ICE CREAM
9. READING A GOOD BOOK
10. DRINKING ALCOHOL

....TO BE CONTINUED
THE PSYCHOLOGY OF CHOCOLATE

Dr G Neil Martin
Department of Psychology
Middlesex University

www.mdx.ac.uk/hssc/staff/profiles/academic/martinn.asp

n.martin@mdx.ac.uk