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Bounds of Optimal Learning

Roman V. Belavkin

Abstract—Learning is considered as a dynamic process de-
scribed by a trajectory on a statistical manifold, and a topology
is introduced defining trajectories continuous in information.
The analysis generalises the application of Orlicz spaces in non-
parametric information geometry to topological function spaces
with asymmetric gauge functions (e.g. quasi-metric spaces
defined in terms of KL divergence). Optimality conditions are
formulated for dynamical constraints, and two main results are
outlined: 1) Parametrisation of optimal learning trajectories
from empirical constraints using generalised characteristic
potentials; 2) A gradient theorem for the potentials defining
optimal utility and information bounds of a learning system.
These results not only generalise some known relations of
statistical mechanics and variational methods in information
theory, but also can be used for optimisation of the exploration-
exploitation balance in online learning systems.

I. INTRODUCTION

OPTIMAL control theory [1], [2] and methods of condi-
tional Markov processes in stochastic optimal control

[3] have had a great impact on the development of adaptive
and learning systems [4], [5]. Under certain conditions re-
quired for the convergence of empirical distributions, these
systems can satisfy some optimality criteria asymptotically,
even if the information they use is incomplete. One of the
greatest challenges, however, is the development of a non-
asymptotic theory of learning and optimisation that could be
applied to a wider class of problems, such as optimisation of
non-stationary processes and learning from non-independent
and not identically distributed sequences. Such processes
have been studied in information theory and non-stationary
non-equilibrium thermodynamics. This paper presents a non-
asymptotic approach to optimisation of learning based on
information value theory [6], where variational problems
were first considered in the context of Bayesian learning.
It presents further development of the duality theory of
utility and information [7] by considering topologies on
function spaces suitable to describe learning systems and
their optimisation. The geometric approach has been inspired
by works in information geometry [8]–[10].

The next section overviews briefly some basic concepts
of utility theory and its relation to the theories of decisions
under uncertainty and stochastic optimal control. It will also
discuss the main problem of their application to learning
systems. Section III will be concerned with a representation
of learning processes in topological functional spaces. Their
relation to normed spaces, such as Orlicz spaces in non-
parametric information geometry [10], will be discussed.
Section IV will connect these representations with optimi-
sation theory. Generalised characteristic potentials will be
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introduced that allow for prametrisation of optimal trajecto-
ries from empirical constraints. The optimal trajectories will
define bounds on expected utility and information gains in
learning systems, which are computed as path integrals in
conservative vector fields of the gradients of the potentials.
The method will be illustrated on two examples for optimi-
sation systems with a binary and uncountable utilities, and
when information is represented by negative entropy. In the
end, we discuss how this work is related to the maximum
entropy principle of statistical mechanics, information value
theory and how it generalises the optimal control.

II. OPTIMISATION AND LEARNING

Let A be a set of arbitrary nature, and let .⊆ A2 be
a complete transitive binary relation (total pre-order or the
preference relation). Then (A,.) is an abstract choice set. A
subset of symmetric pairs ∼⊆. is the equivalence relation,
and antisymmetric <⊆. is a partial order. The quotient
set A\ ∼ is totally ordered. We assume that the quotient
set A\ ∼ can be embedded into the extended real line R ≡
R∪{±∞}, and therefore the preference relation has a utility
representation x : A → R:

a1 . a2 ⇐⇒ x(a1) ≤ x(a2)

The rational choice and optimisation problems then can be
solved by maximisation of the utility.

Under uncertainty, one considers probability measures
µ : R → [0, 1] ⊂ R on some σ-ring R(A) ⊆ 2A.
These measures are sometimes interpreted as lotteries over
the choice set (A,.). For example, the Dirac δ-measures
(δa(da) = 1 if a ∈ da; 0 otherwise) correspond to the
elements a ∈ A observed with certainty. Other lotteries
are convex combinations of the δ-measures. The problem of
optimal choice under uncertainty is solved by extending the
preference relation (A,.) onto the set of all lotteries. This
extension should be compatible with (A,.) in the following
sense (∆,.) = (A,.), where ∆ is the set of all Dirac δ-
measures. One such extension is given by the expected utility:

Eµ{x} =
∫

A

x(a) µ(da)

Thus, measure µ is preferred to ν if Eµ{x} ≥ Eν{x}.
This method is adopted in the classical Bayesian estimation
procedures [11] and stochastic optimal control [1], [3].
Moreover, it is well-known that the expected utility is the
only representation satisfying the continuity and substitution
independence axioms [12], typical for ordered linear spaces.

Although in many cases the methods of optimal control
can be applied under certain assumptions to the learning sys-
tems, one has to take into account that probability measures



in learning problems are not known. Instead, the learner has
to propose a hypothesis (a prior) about the measure before
making a decision, and then update the hypothesis using
posterior information. This important difference means that
the described above theory is optimal only approximately (or
asymptotically).

In this work, we consider an evolution of the learning
system as a trajectory µ = µ(t) in the space of all probability
measures (i.e. the space of all hypotheses). A topology in
this space will allow us to consider continuous trajectories.
This topology will be related to empirical information that
the learning system receives, and our main goal will be
to define optimality conditions and parametrisation of the
optimal trajectories. The theory has close relation to the use
of Orlicz spaces in non-parametric information geometry [10]
and conjugate duality in optimisation theory [13].

III. TOPOLOGICAL SPACES OF LEARNING SYSTEMS

First, we point out that all measures we deal with are
Radon (tight, inner-regular) measures. This is because a
preference relation (A,.) with a utility representation is
a separable, complete metric space. Radon measures are
finite on compact subsets: µ(Ac) < ∞, if Ac ⊂ A is
compact. They can be defined as non-negative, continuous
linear functionals µ(f) on the space C∞c (A) of continuous
functions with compact support.

All measures µ that are absolutely continuous with respect
to some dominating measure ν have coordinatisations in
Lebesgue space L1(A, ν) given by the Radon-Nikodym
derivatives y(a) = dµ/dν. For example, if A is compact,
then one can take some constant dominating measure da (e.g.
the Lebesgue measure), and then measures can be identified
with the density functions y ∈ Y , where Y = C∗c (A) is
the dual of space C∞c (A) with respect to a bilinear form
〈·, ·〉 : Y × C∞c → R, represented by the inner product

〈y, f〉 =
∫

A

f(a) y(a) da , f ∈ C∞c (A) (1)

Thus, probability measures correspond to non-negative lin-
ear functionals y ∈ Y with the L1 norm equal to one:
‖y‖1 =

∫
A
|y(a)| da = 1. The set of all such measures

is sometimes referred to as the statistical manifold, and it
represents the space of hypotheses of the learning system.
The statistical manifold is a Choquet simplex — a convex
hull in L1 with extreme points corresponding to the Dirac
δ-measures. Note that if set A is infinite, then δ-measures
are singular with respect to da, and therefore do not belong
to L1(da). However, they can be considered as generalised
limits in the extended optimisation problems (see [13]).

The expected utility representation requires not only that
the utility functions are measurable, but also summable with
respect to the measures being compared. Thus, suitable utility
functions are points in space X = Y ∗, the dual of Y with
respect to the transposed bilinear form (1). This means that
X = C∗∗c (A) is the second dual of C∞c (A), and space Y is
the pre-dual of X . If set A is finite, then these spaces are
reflexive (because they are finite-dimensional). In this case,

space X of utility functions is isomorphic to C∞c (A), and Y
is also the dual of X . Here, we consider the general case
when set A can be infinite, and therefore the corresponding
spaces can be infinite-dimensional.

We now introduce a topology on Y (and the statistical
manifold) that is stronger than the topology of L1. This
topology will also induce polar topology on the space X
of utility functions. Let y0 ∈ Y be some initial point
in Y (e.g. the prior hypothesis), and let KY ⊂ Y be
some closed neighbourhood of y0 containing all measures
consistent with posterior information. This neighbourhood
can be defined using the fact that learning systems are
characterised by incomplete information. In particular, the
Dirac δ-measures cannot be included into KY because they
correspond to complete certainty and maximum (possibly
infinite) information. Thus, closed neighbourhoods of y0 in
the topology of systems with information constraints should
be defined by absorbing sets KY that exclude the δ-measures.

A neighbourhood KY of y0 in a linear space can be
defined with the distance of y ∈ KY from y0. In particular,
the distance from 0 ∈ Int(KY ) is given by the gauge

D(y) = inf{β > 0 : y ∈ βKY }

with D(y0) = 0. It is well-known also that if KY is convex,
then the gauge can be computed as the support function of
the polar set K∗

Y = {x : 〈x, y〉 ≤ 1, y ∈ KY } ⊂ X = Y ∗

D(y) = sup{〈x, y〉 : x ∈ K∗
Y }

Note that the polar set is always convex, and it is absorbing
if and only if set KY is bounded. Clearly, it is also true
for the bipolar set K∗∗

Y . Here, we shall only consider the
case, when KY = K∗∗

Y (i.e. K∗
X = KY ), and therefore

closed neighbourhoods KY and KX in spaces Y and X are
bounded and absorbing closed convex sets (convex sets with
interior points are also called convex bodies). However, we
shall not require these sets to be balanced (symmetric). The
gauge (also called the Minkowski functional) and the support
function are positively homogeneous of the first degree
and sub-additive on convex sets (and therefore convex).
They generalise norms and semi-norms, and many important
results of functional analysis still hold for these functions.
For example, the Hahn-Banach theorem holds for Minkowski
functionals in linear spaces over R. Other results, which will
not be reported here, include the completeness of the dual and
separability (under certain conditions) of the pre-dual space,
boundedness of continuous linear functionals on bounded
sets, and so on. Because information is non-symmetric, it
is attractive to develop the theory using a non-symmetric
topology. This is a generalisation of the normed spaces, such
as the Orlicz spaces, used in information geometry [10].
Another reason for this generalisation is monotonicity, which
will be pointed out later.

If the amount of empirical information in the learning sys-
tem can be measured by some convex functional F : Y → R,
then convex body KY can be defined by the restriction
F (y) ≤ I ∈ im(F )\{+∞}. The polar set KX is defined by



the corresponding restriction of the dual convex functional
F ∗(x) ≤ I∗ ∈ im(F ∗) \ {+∞}. For the theory of convex
functions see [13], [14]. Here we recall some basic concepts.

Let F : Y → R be a proper, closed (lower semi-
continuous), convex functional. Note that F : Y → R is
proper if its effective domain dom F ≡ {y : F (y) < ∞}
is non-empty and F (y) > −∞. Such functionals are
continuous on the interior of dom F . Gâteaux differential
(directional derivative) is generalised by the sub-differential:

∂F (y) ≡ {x ∈ X : 〈x, y′−y〉 ≤ F (y′)−F (y)} , ∀ y′ ∈ Y

where ∂F ⊂ X is a non-empty, bounded and closed convex
set. If F (y) is differentiable at y, then ∂F (y) = {x} (i.e. a
singleton set); otherwise, x ∈ ∂F (y). Thus, the minimum of
F (if exists) is y0 ∈ dom F such that 0 ∈ ∂F (y0).

The dual functional F ∗ : X → R is defined by the
Legendre-Fenchel transform:

F ∗(x) = sup{〈x, y〉 − F (y)} , x ∈ ∂F (y)

It is always convex, closed and proper. An important property
of the dual convex functionals F and F ∗ is that they are both
differentiable if and only if they are both strictly convex.

The gauge for set KX and the support of its polar set KY

for x0 = 0 and y0 = 0 can be defined as:

D∗(x) = inf{β−1 > 0 : F ∗(β x) ≤ I∗} (2)
D∗(x) = sup{〈x, y〉 : F (y) ≤ I} (3)

In the same manner, one defines function D(y) that is the
gauge for set KY and the support of KX . Topological spaces
LF and L∗F , associated with dual functionals F and F ∗, are
the totalities of all elements y ∈ Y and x ∈ X , such that
D(y) < ∞ and D∗(x) < ∞. Thus, closed neighbourhoods
of y0 ∈ LF are sets KY = {y : F (y) ≤ I < ∞} ⊂ Y . This
topology can be considered along with the upper topology
on (R,≤), in which closed sets are segments (−∞, I] ⊂ R.
In this case, information constraints I1 ≤ I2 correspond to
sets K1 ⊆ K2 ⊂ LF . The gauge D(y) with respect to a ‘unit
ball’ {y : D(y) ≤ 1} defines a complete pre-order on LF ,
and any function y = f(I) that is monotonic with respect
to pre-orders (LF ,.) and (R,≤) is also continuous in these
topologies.

If convex functionals F and F ∗ can be represented in
the integral form F (y) =

∫
f(y(a)) da, where f : R →

R is an even (symmetric), convex function with f(0) = 0
and lim f(t) = ∞ for t → ∞, then spaces Lf and L∗f are
the dual Orlicz spaces. These spaces are complete normed
spaces (Banach spaces), in which the gauge is a norm, and
they are a generalisation of the classical Lp spaces (sequence
spaces can also be considered). The theory of such spaces
is well-developed, and Orlicz spaces have been used in non-
parametric information geometry [10]. Here, however, we
shall not require dual functionals F and F ∗ to be symmetric,
and therefore the gauge will not be a norm. An important
reason for this is to avoid non-monotonic operations, such
as x 7→ |x| on the utility functions, because they do not
preserve the preference relation (A,.) on the domain. In

optimisation problems, monotonicity is more important than
symmetry.

Note also that differentials of convex functionals are
monotone operators between dual spaces [17]. In fact, if
dual functionals F and F ∗ are both strictly convex, then
they are both differentiable, and the pair of strictly monotone
operators ∂F and ∂F ∗ (∂F = (∂F ∗)−1) set up a Galois
connection between pre-ordered topological spaces LF and
L∗F . Below are precisely such asymmetric functionals that
appear often in problems with information constraints:

F (y) =
∫

A

(
ln

y(a)
y0(a)

− 1
)

y(a) da (4)

F ∗(x) =
∫

A

ex(a) y0(a) da (5)

Functional (4) is information (KL) divergence [15], [16]
also known as the relative entropy. Its effective domain
contains y ≥ 0 absolutely continuous w.r.t. y0 ≥ 0. If
set A is infinite, then we assume F (δ) = +∞, because
lim F (y) = +∞ as y(a) → δa(da)/da. Its unique min-
imum is achieved at y = y0. Information divergence (4)
generalises several functionals used in statistical mechanics
and information theory (e.g. negative Boltzmann entropy and
Shannon mutual information). Its dual is functional (5). It is
positive for y0(a) > 0, and inf F ∗(x) = lim F ∗(x) = 0
as x(a) → x0(a) = −∞ (in the sense of pointwise
convergence). Normalisation of functions y corresponds to
transformation F ∗(x) 7→ lnF ∗(x).

Learning systems are characterised by increasing informa-
tion dynamics. I = I(t), where t ∈ R is time (discrete or
continuous). In this case, continuous functions y = f(I),
defined in terms of topology LF and upper topology on
im (F ) ⊂ (R,≤), can also be considered as y = f ◦ I(t)
continuous with respect to the upper topology on t ∈ R.
This represents that learning systems use new information to
update the hypothesis y ∈ LF . With some abuse of notation,
we can represent the evolution of a learning system by a
continuous trajectory y(t) on the statistical manifold. In the
next section, we shall consider the problem of optimisation
of the evolution of a learning system. The analysis is closely
related to the information value theory [6] and variational
methods in approximate inference.

IV. OPTIMALITY, PARAMETRISATION AND BOUNDS

If x ∈ X is the utility representation of (A,.), then
maximisation of the expected utility is just maximisation
of the linear functional x(y) = 〈x, y〉 on the statistical
manifold. Incomplete information in a learning system im-
poses additional constraints, restricting the set of feasible
solutions to some subset KY . This is a standard optimisation
problem with constraints, and it coincides with the support
function (3) of set KY or the gauge (2) of the polar set
K∗

Y . New information may relax the constraints, but unless
the system can receive the maximum (possibly infinite)
information amount, the constraints remain active. Observe
also that the statistical manifold is a simplex, and without the
constraints, a continuous linear functional always achieves



the extremum in one of the extreme points (i.e. one of the
δ-measures).

Let us denote by U = 〈x, ŷ〉 the value of the linear
functional for the optimal solution ŷ ∈ KY . Conditions
defining this solution are obtained in a standard way by the
Kuhn-Tucker theorem.

Theorem 1 (Necessary conditions of extrema). Let Y and
X be a dual pair of linear spaces with respect to some non-
degenerate bilinear form 〈·, ·〉 : X × Y → R, and let F :
Y → R be a proper, closed, convex functional. The solutions
ŷ of conditional extremum

U(I) = sup{〈x, y〉 : F (y) ≤ I ∈ im (F ) \ {+∞}}

satisfy the following conditions

βx ∈ ∂F (ŷ) , F (ŷ) = I , β−1 ∈ ∂U(I)

Proof: The extrema are defined by zero in the sub-
differential of the Lagrangian function L(y, β−1, I) =
〈x, y〉+β−1[I−F (y)], where β−1 is the Lagrange multiplier
for F (y) ≤ I:

∂yL(y, β−1, I) = x− β−1∂F (y) 3 0 , ⇒ βx ∈ ∂F (ŷ)
∂β−1L(y, β−1, I) = I − F (y) 3 0 , ⇒ F (ŷ) = I

By considering the value of the Lagrangian as function of
the constraint U = U(I), its subdifferential gives the third
condition: ∂U(I) 3 β−1.

Similar necessary conditions βx ∈ ∂F (ŷ), 〈x, ŷ〉 = U ,
β ∈ ∂I(U) can be obtained by solving the following (dual)
minimisation problem

I(U) = inf{F (y) : 〈x, y〉 ≥ U > −∞}

Necessary conditions become also sufficient, if one consid-
ers convexity of F in the Lagrangian function: U = 〈x, ŷ〉 is
the maximum for β > 0 and the minimum for β < 0. Convex
functional F (y) has only one extremum (the minimum), and
β = 0 corresponds to the global minimum (0 ∈ ∂F (y0)).

If F (y) is information divergence (4), then the necessary
conditions give solutions in the exponential form

β x(a) = ln
ŷ(a)
y0(a)

+ γ(β) ⇒ ŷ(a) = y0(a) eβx(a)−γ(β)

where eγ(β) =
∫

A
y0 eβx da is the normalising condition. If

y0(a) = const, then optimal function ŷ(a) is the density of
the Gibbs distribution.

One can see that the optimal solutions ŷ are parametrised
by β ∈ R related to one of the constraints F (ŷ) = I or
〈x, ŷ〉 = U . We factorise these relations by introducing the
generalised characteristic potentials:

Φ(β−1) ≡ inf[β−1I − U(I)] , Ψ(β) ≡ sup[βU − I(U)]

The extrema in the definitions above are satisfied if

β−1 ∈ ∂U(I) , β ∈ ∂I(U)

These conditions correspond to the optimality condition
in Theorem 1. Note, however, that the potentials are real
functions Φ : R → R and Ψ : R → R independent of the
dimensionality of spaces Y and X . We shall assume from
now that the potentials are differentiable (e.g. when the dual
functionals F and F ∗ are strictly convex) and denote their
derivatives by Ψ′ and Φ′. Their applications are based on the
following theorem.

Theorem 2 (Parametrisation). Parameter β ∈ R, defining the
solutions ŷ of the dual extremal problems U = sup{〈x, y〉 :
F (y) ≤ I} and I = inf{F (y) : 〈x, y〉 ≥ U}, is related to
the constraints I ∈ R or U ∈ R by the following relations

I = Φ′(β−1) , U = Ψ′(β)
I = βΨ′(β)−Ψ(β) , U = β−1Φ′(β−1)− Φ(β−1)

Proof: Consider the Legendre-Fenchel transforms of the
potentials:

U(I) = inf[β−1I − Φ(β−1)] , I(U) = sup[βU −Ψ(β)]

The necessary conditions of extrema are I = Φ′(β−1) and
U = Ψ′(β), which is the first pair of relations. Substituting
them into the above transforms gives the second pair.

It is easy to check also the relation

Φ(β−1) = −β−1Ψ(β)

For density functions in the exponential form, characteristic
potential Ψ(β) is the cumulant generating function of mea-
sure ν(da) = y0(a) da:

Ψ(β) = ln
∫

A

eβx(a)y0(a) da

Potential Φ(β−1) in this case is the free energy.
In some cases, the potentials allow for closed form

parametrisation. The following are examples for two im-
portant cases of a binary and uncountable utility functions,
and when F (y) is information divergence with respect to a
uniform measure (e.g. when F (y) is negative entropy).

Example 1. Let A = {a1, a2}, utility x : A → {c−d, c+d},
and the reference measure be da = 1/|A| = 1/2,. Then

Ψ(β) = β c + ln cosh(β d)
U(β) = c + d tanh(β d)

Example 2. Let A be uncountable, and let the utility function
be x : A → [c − d, c + d] ⊂ R. Consider measures
on equivalence classes x(a) ∈ R and a uniform reference
measure dx/

∫
dx on compact subsets of R. Then

Ψ(β) = β c− ln |β d|+ ln | sinh(β d)|
U(β) = c− β−1 + d coth(β d)
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Fig. 1. Functions U = Ψ′(β) in Examples 1 and 2.

Figures 1 and 2 show functions U = Ψ′(β) and I =
βΨ′(β) − Ψ(β) from Examples 1 and 2 with c = 0 and
d = 1. Functions U = Ψ′(β) are invertible, and the inverse
gives parametrisation of the optimal measures from empirical
constraints 〈x, y〉 ≥ U on the expected utility. Alternatively,
one can use the entropy of empirical distribution to obtain
β−1 from the inverse relation of I = Φ′(β−1).

Let us now consider the evolution of a learning sys-
tem, which is characterised by the dynamics of information
F (y) ≤ I(t). The topology LF , introduced in previous
section, allows us to represent this evolution by a continuous
trajectory y = y(t) on the statistical manifold. The trajectory
defines also the expected utility dynamics 〈x, y(t)〉. The
cumulative expected utility and information gains along the
trajectory on t ∈ [t1, t2] are defined by the following path
integrals∫ y(t2)

y(t1)

〈x, y(t)〉 dy(t) ,

∫ y(t2)

y(t1)

F (y(t)) dy(t)

Clearly, an optimal system evolves along optimal trajectory
ŷ(t) that defines some bounds on the quantities above. These
bounds should be path (trajectory) independent, which is
shown by the following theorem.

Theorem 3 (Optimal bounds). Let I = I(t), U = U(t)
be monotone functions describing constraints F (y) ≤ I(t)
or 〈x, y〉 ≥ U(t) in a learning system with a continuous
trajectory y = y(t), t ∈ [t1, t2], on the statistical manifold.
Then ∫ y(t2)

y(t1)

〈x, y(t)〉 dy(t) ≤ Ψ(β2)−Ψ(β1)∫ y(t2)

y(t1)

F (y(t)) dy(t) ≥ Φ(β−1
1 )− Φ(β−1

2 )

where β1, β2 are determined from I(t1), I(t2) or U(t1),
U(t2) using functions β−1 = (Φ′)−1(I) or β = (Ψ′)−1(U)
respectively.

Proof: The optimal trajectory is the totality of func-
tions, satisfying optimality conditions of Theorem 1 and
parametrised by β(t) ∈ R for each constraint I(t) or U(t),
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Fig. 2. Functions I = Φ′(β−1) in Examples 1 and 2.

as shown in Theorem 2. Path integrals are independent of
parametrisation, and therefore the bounds can be computed as
integrals along the optimal trajectory ŷ(β), β ∈ [β1, β2]. Us-
ing Theorem 2, we substitute the optimal values 〈x, ŷ〉 = U
and F (ŷ) = I in the integrals by the derivatives U = Ψ′(β)
and I = Φ′(β−1) of the characteristic potentials. The bounds
are then given by the corresponding Riemann integrals:∫ β2

β1

Ψ′(β) dβ ,

∫ β−1
1

β−1
2

Φ′(β−1) dβ−1

The final expressions are obtained by applying the Newton-
Leibniz formula.

Theorem 3 is the analogue of the gradient theorem of
vector analysis, which states that path integrals in conserva-
tive vector fields are path independent. If F (y) is Shannon
information, then the first expression of the theorem defines
the upper bound on cumulative expected utility gain for a
given change of information; the second expression is the
lower bound on cumulative information required to achieve
a given change of expected utility.

V. DISCUSSION

This paper described geometric interpretation of utility and
information evolution in learning systems. The most relevant
results for practical applications are: 1) the parametrisation
method of optimal measures from empirical constraints that
is independent of dimensionality of the problem; 2) optimal
bounds that can be useful for estimating system requirements.
It is also interesting to point out the following uniqueness
result. If information is represented by any strictly convex
function F (y), then the optimality conditions are satisfied
by unique measures, and therefore the optimal learning tra-
jectory y = ŷ(t) is unique. In particular, if F (y) is negative
entropy, then the optimality conditions are equivalent to the
maximum entropy principle [18], and the optimal trajectory
describes evolution of thermodynamic equilibrium states.
The optimal measures in this case are Gibbs distributions,
which are often used in stochastic optimisation and some
exploration algorithms. The parametrisation method defines
the optimal ‘temperature’ (β−1) for such algorithms from



empirical constraints (e.g. as β = (Ψ′)−1(U), where U is
the empirical expected value). Because optimality conditions
are formulated for local information constraints, the theory is
non-asymptotic. It presents the opportunity to optimise online
learning algorithms and exploration-exploitation balance.

The theory presented extends further the analogy between
learning and physical systems. For example, the optimal
bounds can be interpreted as the actions of an optimal
learning system with respect to two conservative forces
— expected utility and information. The first optimality
condition in Theorem 1 can be written as eikonal equation
∂〈x, y〉 = β−1∂F (y), which shows the similarity between
geometric learning theory, presented here, and geometric
optics (i.e. the ray method and the Fermat principle).

Optimisation of learning can be seen as a generalisation
of the optimal control. Indeed, the latter optimise evolution
of a system in space X (e.g. utility) and time. It can be
solved, for example, by the dynamic programming method
sequentially optimising the expected utility [1], which is an
optimisation of a linear functional on each step. Observe
that the Lagrangian function in Theorem 1 becomes linear
as β−1 → 0. Optimality condition β−1 = ∂U(I) implies that
such a control is optimal only when new information results
in zero change of the expected utility. Clearly, Theorem 1
gives the required generalisation for the learning systems.

This work considered learning as an optimisation in the
pre-dual space Y and information, and therefore learning
can be seen as the pre-dual process of optimal control in
space and time. Previously, the author applied the theory
in cognitive models of human and animals [19], for op-
timal action selection in agents learning in non-stationary
stochastic environments [20] and for stochastic reinforcement
learning of procedural knowledge in neural cell-assemblies
[21]. Applications of this theory to other specific problems
is the subject of ongoing research.
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April 2003, pp. 21–26.

[20] R. V. Belavkin, “Acting irrationally to improve performance in stochas-
tic worlds,” in Proceedings of AI–2005, the 25th SGAI International
Conference on Innovative Techniques and Applications of Artificial
Intelligence, M. Bramer, F. Coenen, and T. Allen, Eds., vol. XXII,
BCS. Cambridge: Springer, 2005, pp. 305–316.

[21] R. V. Belavkin and C. Huyck, “Emergence of rules in cell assemblies
of fLIF neurons,” in The 18th European Conference on Artificial
Intelligence, 2008.


