
Final accepted version (with author's formatting)

This version is available at: https://eprints.mdx.ac.uk/33445/

Copyright:

Middlesex University Research Repository makes the University's research available electronically.

Copyright and moral rights to this work are retained by the author and/or other copyright owners unless otherwise stated. The work is supplied on the understanding that any use for commercial gain is strictly forbidden. A copy may be downloaded for personal, non-commercial, research or study without prior permission and without charge.

Works, including theses and research projects, may not be reproduced in any format or medium, or extensive quotations taken from them, or their content changed in any way, without first obtaining permission in writing from the copyright holder(s). They may not be sold or exploited commercially in any format or medium without the prior written permission of the copyright holder(s).

Full bibliographic details must be given when referring to, or quoting from full items including the author's name, the title of the work, publication details where relevant (place, publisher, date), pagination, and for theses or dissertations the awarding institution, the degree type awarded, and the date of the award.

If you believe that any material held in the repository infringes copyright law, please contact the Repository Team at Middlesex University via the following email address:

eprints@mdx.ac.uk
The item will be removed from the repository while any claim is being investigated.

See also repository copyright: re-use policy: http://eprints.mdx.ac.uk/policies.html#copy
Abstract

Contact tracing apps used in tracing and mitigating the spread of COVID-19 have sparked discussions and controversies worldwide. The major concerns in relation to these apps are around privacy. Ireland was praised for the design of its COVID tracker app, and the transparency through which privacy issues were addressed. However, the "voice" of the Irish public was not really heard or analysed. This study aimed to analyse the Irish public sentiment towards privacy and COVID tracker app. For this purpose we have conducted sentiment analysis on Twitter data collected from public Twitter accounts from Republic of Ireland. We collected COVID-19 related tweets generated in Ireland over a period of time from January 1, 2020 up to December 31, 2020 in order to perform sentiment analysis on this data set. Moreover, the study performed sentiment analysis on the feedback received from a national survey on privacy conducted in Republic of Ireland. We collected COVID-19 related tweets generated in Ireland over a period of time from January 1, 2020 up to December 31, 2020 in order to perform sentiment analysis on this data set. The findings of the study reveal a significant criticism towards the app that relate to privacy concerns, but other aspects of the app as well. The findings also reveal some positive attitude towards the fight against COVID-19, but these are not necessarily related to the technological solutions employed for this purpose. The findings of the study contributed to the formulation of useful recommendations communicated to the relevant Irish actors.

CCS Concepts

• Security and privacy;

Keywords

privacy, Sentiment Analysis, COVID-19, tracker app

ACM Reference Format:

1 INTRODUCTION

Contact tracing apps used in tracing and mitigating the spread of COVID-19 have sparked discussions and controversies worldwide. The major concerns in relation to these apps are around privacy. Ireland was praised for the design of its COVID tracker app, and the transparency through which NearForm¹ and the HSE (Ireland’s Health Services) addressed privacy issues. The HSE provided a considerable amount of information on their website regarding the data processing, and made the data protection impact assessment (DPIA) of the app available to the public. The source code of the app is also available as open source and can be examined. However, concerns about privacy were raised for instance by the Irish Council for Civil Liberties due to lack of transparency from Apple and Google’s side in terms of their involvement in the tracker app². A research study also revealed issues with the DPIA and some of the documentation, some of the statements in the DPIA being shown as

¹https://www.nearform.com/
rather assumed than demonstrated [5]. The question is what is the Irish public sentiment? Are citizens concerned about their privacy? Are these concerns preventing them from adopting the COVID tracker app? These are all very important questions as the success of the app is dependent on the percentage of people adopting it.

Social media has grown drastically during the last few years. One of the most widely used social media platforms is Twitter, where people from all over the world share short messages (within 280-character limit) on a wide range of topics. Starting from the beginning of 2020 till date, COVID-19 is among the most popular topics of discussion as it still continues to cause a worldwide pandemic. A huge amount of COVID-19 related tweets has been and continues to be generated online. In this work, we perform an in-depth analysis of COVID-19 tweets generated in all over Ireland in order to investigate Irish people’s attitude during this pandemic era. Our specific focus is on finding the attitude of the people living in Ireland towards tracking technology in general and COVID tracker app in particular and privacy. We also perform sentiment analysis on survey data, namely on participant’s comments gathered in a survey on privacy during COVID-19 conducted in the Republic of Ireland3. This research study was an intermediate step in a larger project that had a considerable number of private and public Irish stakeholders including HSE. The main goal of the larger project was to rapidly provide specific recommendations to the relevant stakeholders and policy makers in the Republic of Ireland on which technological solutions are best suited for Ireland when responding to the COVID-19 crisis in light of the population’s perception of these technologies and their impact on their privacy. The results of the study presented in this paper were fed into an extensive socio-legal analysis that concluded in the aforementioned recommendations. These were communicated to the stakeholders and beyond in a couple of webinars - private webinars with the project stakeholders only - but also public webinars4.

The paper is organized as follows. Section 2 discusses the related work, section 3 focuses on the sentiment analysis on Twitter data, while section 4 present the analysis performed on the survey data. The final sections draws the conclusions.

2 RELATED WORK

Sentiment analysis was demonstrated to have various applications in fighting COVID-19, but also other infectious diseases (e.g. Ebola, influenza-a H1N1, etc.) [3]. Sentiment analysis can assist for instance governments and authorities in determining the appropriate strategy of communication with the public during such outbreaks in order to promote social responsibility, raise awareness about appropriate measures, provide scientific-based data, verified news, etc. There are quite a few sentiment analysis studies that gravitate around COVID-19 pandemic. These were performed predominantly on social media data, especially Twitter data, but also on data collected from Facebook ([11]) and Weibo ([6] [7]).

Some of these studies are more general, looking at the general sentiment toward the pandemic ([4] [9]). Bhat et al. [4] performed a general sentiment analysis on Twitter data. Similarly, Mansoor et al. [9] presented the global sentiment analysis of COVID-19 related tweets, but they also showed how the sentiment of people in different countries has changed over time. Other studies are more specific (dedicated to a certain topic, e.g. COVID tracker app [12] or focused on the monitoring of certain feelings [8]). Moreover, some studies are global or worldwide (e.g. [9], [8]). Lwin et al. [8] Lwin et al. [8] performed a worldwide sentiment analysis on Twitter data focused on the following emotions: fear, anger, sadness, and joy and how these relate to COVID19. The evolution of these emotions throughout a certain period during the pandemic is presented also. The study emphasizes on the importance of sentiment analysis as a method to analyse these emotions. This analysis could drive timely and strategic interventions in terms of public health communication aiming at balancing public psychological well being. Other studies are more localized (limited to a geographical region/country e.g. Ireland [12], Filipinos [10], USA [13]). The work of Samuel et al. [13] for instance shows insights into the progress of fear-sentiment over time as COVID-19 approached peak levels in the USA. Pastor [10] conducted a sentiment analysis on Twitter data in order to reveal the sentiment of the Filipinos in relation to the extreme community quarantine caused by COVID-19 Pandemic. It also aimed to analyse the effects of the quarantine on the personal lifestyle of the Filipinos. The study revealed an increased negative attitude of the Filipinos toward lockdown and social distancing. The study demonstrated that much of this attitude is due to issues with food shortage caused by the lockdown measures. One of the aim of the study is to provide recommendations in relation to the interventions needed by the people in Philippine.

Tracking technologies and apps used during COVID-19 have generated a lot of research and controversies that were in general related to privacy issues. A comprehensive survey on contact tracing apps can be found here: [2]. Privacy and security issues (including possible attacks) are discussed in this survey, and also other concerns raised by the users that relate to the battery consumption and compatibility issues with various OS versions. Other research focused on performing technical analysis on the manner in which security and privacy is tackled by various contact tracing apps [5]. In this latter reference, privacy and security issues were found.

Finally, some of the research related to the contact tracing apps focused on conducting sentiment analysis. Such a study was recently performed in relation to the COVID tracker app used in the Republic of Ireland: a manual sentiment analysis on the Google Play comments [12]. The study focused mostly on the usability aspect and it has limitations in terms of methods used (manual only) and data analysed.

Our research goes beyond and performs an extensive sentiment analysis on data from two different sources: social media (Twitter data collected over an year) and survey data. First, we look broadly into the general attitude of the Irish people towards pandemic (pre- and during- attempting to capture changes in attitudes as well) and then we focus on privacy and the COVID tracker app. Our purpose was to examine the general sentiment towards the COVID tracker app and the influence of privacy concerns/attitudes on this general sentiment. While our study may seem too localized, taking into consideration only Ireland, it is important to mention that the Irish tracker app is the baseline for tracking apps in the USA and other EU countries.

3 SENTIMENT ANALYSIS ON TWITTER DATA

We collected COVID-19 related tweets from Twitter public accounts of people living in Ireland. We crawled the COVID-19 tweets for the specific time period from 01/01/2020 (before the pandemic started in Ireland) up to 31/12/2020 (during ongoing pandemic). Our research methodology consists of the following stages: (i) crawling of tweets, (ii) data cleaning and (iii) sentiment analysis.

3.1 Tweet Crawling

There are different methods to crawl tweets. The official way is to use Twitter API that needs a license from Twitter. Applying for a license needs cumbersome descriptions of your tasks and often takes a long time. Twint\(^3\) is an open source project which can crawl tweets without time limits. It accepts keywords, language, geolocation, etc. as input parameters. For this reason, we decided to use this tool for crawling. Twint project accepts a configuration that can be adapted to a specific task. The most related configuration items are listed below:

- **Username**: Whose tweets you are going to crawl
- **Search**: Keywords that must be included in the tweets
- **Geo**: The geolocation center and radius of region to be crawled
- **Lang**: The languages of the tweets
- **Output**: The file format
- **Since**: Start time of the tweets
- **Until**: End time of the tweets

The keywords defined for the tweet crawling first need to define some keywords for the tweets as following:

- coronavirus
- covid19
- covid19ireland
- covidtracker
- covidtrackerapp
- covidtrackerireland
- covid
- covid privacy
- covid tracker privacy
- covid tracker app privacy
- covid tracker app privacy attitude
- covid tracker app
- corona virus
- covid19 ireland

We have chosen both general keywords (e.g. covid19) in the attempt to collect all relevant data, but also more specific to the problem investigated (e.g. covidtracker, covid privacy). There is a huge amount of tweets about COVID-19, which comes from each corner of the world. In order to confine the search scope to Ireland, we chose several geographic latitude and longitude coordinates and set approximate radius so that we can obtain the tweets mainly related to Ireland. We adopt four locations as the centre, using different radiuses to refine the crawling scope. The four locations are Dublin, Galway, Cork and county Donegal. Each location’s geographic coordinates and the radiuses are shown in Figure 1.

We obtained more than two million tweets. Afterwards, we filter some noise and remove alignment mistakes, we obtain around 84 thousand tweets which is further reduced in number after removing duplicates and further cleaning that is described in the next section.

3.2 Data Cleaning

It was required to clean the data before performing the sentiment analysis. As tweets are user-generated content (UGC), they usually contain grammatical errors and violate linguistic norms. Due to the limit of 280 characters, in many cases, Twitter users tend to squeeze the contents of the messages by deliberately omitting unimportant words, shortening the sentences, words. This behaviour results in informal texts. In addition, many tweets contain hashtags, urls etc. that do not contribute much to the sentiment analysis process and make the process difficult. For example, consider the following tweet:

"Not So Fast - Ireland’s Covid Tracker App [url]
#COVIDTrackerApp #Location #DataPrivacy #DataProtection"

The above tweet contains an url (shown in blue) and few hashtags (shown in red). These entities usually create noise and impose challenges to the sentiment analysis process. We, therefore, clean the tweets by removing such contents. Hence, after cleaning, the above tweet will appear as follows: "Not So Fast - Ireland’s Covid Tracker App".

3.3 Sentiment Analysis

In this section, we describe the sentiment analysis of the collected tweets. Twitter does not allow the crawling of all tweets and it limits the amount. However, we managed to crawl more than 2.49 million tweets with the help of "Twint" starting from 01/01/2020 until 31/12/2020. As the first lockdown in Ireland started on 12/03/2020, it is clear that this data contains tweets from both pre-pandemic and pandemic situations. We deliberately proceeded in this way in the attempt to capture a change in sentiment in the two periods of time, pre-pandemic and during pandemic. There were many identical tweets and many tweets with only hashtags, urls, etc. We removed these tweets to ease the process of sentiment analysis. As a result, only a part of tweets were considered for sentiment analysis. The data statistics is shown in Table 1. As it can be seen from the table, the number of tweets has been drastically reduced after cleaning because of the identical tweets and a huge amount of noise. It can also be seen that most of the tweets are posted during the pandemic situation which is quite expected. There are 1,566 pre-pandemic tweets in our data set. This is not unexpected because Irish people were not very much concerned until the pandemic started and so they did not post so many contents on Twitter. Although we have used many keywords to crawl the Twitter data, we found tweets for only following three keywords (i) covid19, (ii) covid19ireland, and (iii) covidprivacy. Note that there are no tweets relating to COVID tracker because the app did not exist in the pre-pandemic scenario.

3.3.1 Sentiment analysis tools. We used two different tools for sentiment analysis of the tweets: TextBlob and Affi’s sentiment analysis tool. There are other tools available online that are more popular, however most of them require a training data set to build

\(^3\)https://github.com/twintproject/twint
the sentiment classification model. Our data set does not have training instances. Initially we used TextBlob\(^6\) sentiment analysis tool. We tested it’s performance on our test data set of 216 tweets that were manually annotated with three sentiment classes namely: (i) negative: showing dissatisfaction, unhappiness, compliant etc, (ii) neutral: generally consisting of queries, information regardless of sentiment, and (iii) positive: showing satisfaction, happiness, appreciation etc. When we tested the tool with 216 sentiment annotated tweets, it achieved an accuracy of 64.81% in classifying the sentiments correctly.

The sentiment analysis tool of Afli et al. [1] is specially designed for sentiment analysis in low resource scenarios, especially the tweets. This tool achieved over 70% of sentiment classification accuracy with their Twitter data set. When we tested the tool with our test data set of 216 sentiment annotated tweets, it achieved 65.74% of accuracy which is higher than that of TextBlob. The comparison is shown in Table 2. As Afli’s tool exhibits better performance, we decided to use it for the sentiment classification of our main Twitter data set. We performed sentiment analysis on the tweets from various angles. We looked at the pre-pandemic tweets, then we analysed the during pandemic tweets, then the overall tweets.

\(^6\)https://pypi.org/project/textblob/

3.3.2 Analysis of pandemic related tweets. Figure 2 shows the partition of sentiment classes for the pre-pandemic, (in-)pandemic and all tweets together. We notice in the figure that almost half (49.36%) of the tweets belong to the neutral category for the pre-pandemic tweets. This is less for the (in-)pandemic tweets which reflects similar change in all the tweets because the major part of the tweets belongs to pandemic times. However, the amount of negative tweets for the pandemic situation is less than that in the pre-pandemic situation (19% as compared to 22%). This means that people have posted more positive tweets than negative in the pandemic situation as compared to the pre-pandemic situation. We noticed that many people seem to be optimistic and say positive things about the fight against the virus. They appreciate the efforts of healthcare professionals, HSE(Ireland Health Services), Irish Government, healthcare professionals, and common people.

3.3.3 Analysis of tweets on COVID tracker app. There were not many tweets posted on the COVID tracker app in Irish social media, 1,420 relevant tweets being collected. We have performed sentiment analysis on these tweets and the results can be seen in Figure 3. This figure shows the partition of sentiment classes of the tracker related tweets. It can be seen in the figure that only a 13.88% of the tweets are classified as positive with more than a half (54.7%) being classified as negative. Hence, our analysis shows that Irish people post more negative tweets than positive ones, which reflects their negative attitude towards the COVID tracker app. The tweets reveal privacy concerns, but other issues that relates to battery consumption, performance and efficacy.
3.4 Output Analysis

This section looks at the sentiment analysis output. Previously we discussed about the accuracy of the tools used and we motivated the decision of continuing our experiments with the tools that demonstrated highest accuracy. In looking at the output of the analysis performed, we still noticed some misclassifications. We will give some examples in the next sections.

3.4.1 Output analysis of pre-pandemic tweets. Let us show some examples of both correct classification and misclassification of tweets in Table 3 below.

We can see in Table 3 that first 4 examples are correctly classified by the sentiment analysis system. In contrast, the last two examples (highlighted in red) are misclassified. It happens due to the complexity of the tweets. For example, the 5th tweet in the table contains the negative segment (the segment with negative sentiment) “Absolutely nothing on RTE…” and the positive segment (segment with positive sentiment) “…making a full recovery….”. This tweet should actually be classified as a negative one because the main focus is on the first segment which is negative. However, the sentiment analysis tool gives more positive weight to the second segment than it gives negative weight to the first segment. It is, therefore misclassified as a positive tweet.

3.4.2 Output analysis of pandemic tweets. We now illustrate some examples of both correct classification and misclassification of pandemic tweets in Table 4. First three rows in this table show the examples of correct classification. On the contrary, the last two rows highlights some wrongly classified tweets. Consider example 5, this tweet is actually composed of two sentiment classes. The first part, i.e., “Half a million deleted the Covid-19 tracker app after technical fault” expresses negative opinion while the second part “Problem is sorted out now though, so please download” contains positive opinion. The tweet might be considered as neutral after combining these two sentiments. However, it may also belong to positive class because of the indication that the problem of the tracker app is solved eventually, as sometimes the overall sentiment class is decided based upon the underlying sentiment towards the end of the tweet. Therefore, this tweet should have been classified as either neutral or positive but it is misclassified as negative by the sentiment analysis system.

4 SENTIMENT ANALYSIS ON SURVEY DATA

A national survey on privacy was conducted in Republic of Ireland that was launched in November 2020 and was closed in the beginning of January 2021. The survey shown that Irish people while aware of their privacy are more willing to share their data during the pandemic in the interest of saving lives. The survey invited participants to leave feedback; out of 1012 participants, 202 left comments. Most of these comments are about the COVID tracker app itself. 30.7% of them are related to the survey and 69.3% are about the tracker app. To better understand the comments, we manually inspected all the comments rather than performing automatic sentiment classification. We opted for a manual analysis as it is

Table 3: Examples of correct and misclassification of pre-pandemic tweets

<table>
<thead>
<tr>
<th>Example</th>
<th>Tweets</th>
<th>Predicted class</th>
<th>Expected class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Again, superb coverage by @morningireland of #COVID19 Clear, calm, comprehensive. #publicservicebroadcasting #Coronavirusireland @rtenews</td>
<td>Positive</td>
<td>Positive</td>
</tr>
<tr>
<td>2</td>
<td>@NASCork Thanks for the kind support message. #PatientFirst #COVID19</td>
<td>Positive</td>
<td>Positive</td>
</tr>
<tr>
<td>3</td>
<td>that not make sense. The politicians canceled their meeting because they afraid of corona (but) when people ask them to cancel schools and universities their answer is go to () #COVID19ireland</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>4</td>
<td>@covid19 It’s a pity you didn’t stop thousands of Italians coming into Ireland last weekend. I expect to see a big leap in confirmed cases in two weeks.</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>5</td>
<td>Absolutely nothing on RTE about the patient who has been discharged after making a full recovery from #COVID19. Surprise surprised. #coronavirus</td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>6</td>
<td>This while sad i think is clearly the right decision given the current threat that this virus poses. #FineGael #COVID2019 #marketcrash #COVID19ireland #coronavirusireland</td>
<td>Negative</td>
<td>Positive</td>
</tr>
</tbody>
</table>

Table 4: Examples of correct and misclassification of pandemic tweets

<table>
<thead>
<tr>
<th>Example</th>
<th>Tweets</th>
<th>Predicted class</th>
<th>Expected class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>"Battery drain from Covid-19 app tracker https://t.co/5Y21Euqll</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>2</td>
<td>107 Clare people scheduled for COVID-19 swab failed to attend test over Christmas</td>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>3</td>
<td>Wow they even have the #CovidTracker app translated to Irish already https://t.co/jXTsfjpiZH</td>
<td>Positive</td>
<td>Positive</td>
</tr>
<tr>
<td>4</td>
<td>"Covid Tracker app downloaded and running - for anyone concerned, you don’t have to provide a phone number. You will be asked for it but it’s optional. Check it out at https://t.co/sm6MSWeRvA2 https://t.co/5sk6kwm8yY"</td>
<td>Negative</td>
<td>Neutral</td>
</tr>
<tr>
<td>5</td>
<td>"Half a million deleted the Covid-19 tracker app after technical fault. Problem is sorted out now though, so please download https://t.co/LSE6dK5atg Sent via @updayIE"</td>
<td>Negative</td>
<td>Neutral/Positive</td>
</tr>
</tbody>
</table>
more accurate and the number of comments (202 comments) allowed for it. The comments were then divided into three classes depending upon the degree of underlying sentiment:

(i) negative: if the comment expresses dissatisfaction, unhappiness, complaint etc.
(ii) neutral: if the comment is a query, information etc. regardless of any sentiment,
(iii) positive: if the comment expresses satisfaction, happiness etc.

The feedback on the COVID tracker app are mostly negative: more than half (50.71% as it can be seen in Fig. 4) of the comments express negative opinions. In contrast, only 13.57% of the comments are positive about the app and imply that some people consider the app to be efficient in controlling the pandemic. The rest 35.71% of the comments are neutral, i.e., either they are simply providing information or are queries, regardless of any sentiment. These results on the survey data are extremely similar to the ones that were obtained for the tweets. Many negative comments about the tracker app are around privacy, for example: I understand the benefits of information that privacy violating trackers can have in helping with the Covid crisis. However, it also carries a risk of enabling more unethical privacy violating data collection activities to be more “tolerated” and “seen as acceptable” after the Covid crisis has ceased. This comment is labeling all tracker apps as apps that are clearly violating the privacy. In general, the negative comments seem to indicate that people perceive the tracker app as a gateway to surveillance of the population beyond COVID-19. Another comment states for instance: The fight against COVID19 is important, but the line between fighting COVID19 and privacy is very thin. Could easily be exploited and profited off beyond the cause of fighting COVID19. It is perceived as a dangerous precedent.

There are a few positive comments that relate to privacy and appreciate HSE’s effort to be as transparent as possible (by making the data protection impact assessment available for instance) and the design of the app with respect to privacy. For instance one participant stated: I only use the app because I read the DPIA and was reassured by it, while another one stated: The COVID 19 tracker has been well designed with respect to privacy considerations.

A trust pattern was also noticed in the comments: people seem to trust the public actors rather than the private one. For instance, one comment (from many similar ones) says: My trust is in Government and the HSE only. I have NO trust in ANY private organisation protecting my data, or using it in the best interests of the public....

Another important issue that is highlighted in many comments is the issue of efficacy and the lack of communication in terms of how effective the app is. Some relevant comments in this regard are for instance:

I use the covid tracker but note that I hear little about how useful it is thought to have been - Silence after the initial hype. and Use of tracker system to date in Ireland & UK(?) Real impact / success = ?

Other issues were signaled as well: battery issue, user experience-related and issues related to the backward compatibility. The issue of battery consumption was a well-known issue of the HSE tracker app that was fixed in the meantime.

The general sentiment among the people using the app seems to be that they perceive the use of the app as a sacrifice of their privacy and they expect to see that their sacrifice counts. They want to see conclusive data about the efficacy of the app.

5 CONCLUSIONS

In this paper, we have performed sentiment analysis on the Irish tweets related to COVID-19 over quite a long period of time (a full year) before the pandemic started to manifest itself in Ireland, beginning of 2020 until the end of 2020. We have also performed sentiment analysis on survey data represented by the comments gathered in a survey on privacy during COVID-19 conducted in the Republic of Ireland. We performed an extensive general sentiment analysis and then a more focused one that aimed to look at the Irish public sentiment towards the HSE COVID tracker app used in the Republic of Ireland and the role of privacy in this equation. Our results show that many people seem to be optimistic and say positive things about the fight against the virus. They also appreciate the efforts of HSE, healthcare professionals, and common people. They are not that positive in relation to the tracking technology and COVID tracker app. Both analysis, on tweets and survey data, unveils a predominantly negative sentiment towards the COVID tracker app. Privacy concerns are one of the main causes for this sentiment, but other issues are revealed as well, with efficacy being one of the most prominent among these. People appreciate the transparent communication (e.g. the publishing of the DPIA on the HSE website, open discussion about privacy concerns), however the general sentiment even among the people using the app is that they are sacrificing their privacy. Hence, the importance of the other theme, the efficacy theme. As they feel that they are sacrificing their privacy, people need to see that their sacrifice matter, they want to see conclusive data about its efficacy.

Our study had a similar final goal to the other sentiment analysis studies focused on COVID-19, namely providing specific recommendations to the relevant authorities aimed at managing the crisis. As mentioned in the introduction of this paper, this research study was an intermediate step in a larger project that had a considerable number of private and public Irish stakeholders including HSE. The findings of this study were used in formulating recommendations to these stakeholders that were communicated in a couple of webinars - private webinars with the project stakeholders only - but also public webinars8. Hence, our study had a similar impact eit

For instance, one of the recommendations that has derived from this study relate to the transparent communication with the Irish public in terms of privacy matters related to the COVID tracker app, but also to the aspects related to the efficacy of the app. The information should be provided using clear and intelligible language. Another recommendation relates to the involvement of private vs public actors: a greater involvement of and reliance on public actors is recommended. This recommendation is greatly influenced by the increased trust of Irish people in the public institutions as compared to the private ones.

ACKNOWLEDGMENTS

This publication has emanated from research conducted with the financial support of Science Foundation Ireland through COVID

Rapid Response programme grant number 20/COV/0229 and through the grant 13/RC/2094 co-funded under the European Regional Development Fund through the Southern and Eastern Regional Operational Programme to Lero - the Irish Software Research Centre (www.lero.ie) and the ADAPT Centre for Digital Content Technology (www.adaptcentre.ie) [grant number 13/RC/2106]. For the purpose of Open Access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.

REFERENCES

