Relationship between the morphological, mechanical and permeability properties of porous bone scaffolds and the underlying microstructure

Lu, Yongtao, Cheng, LiangLiang, Yang, Zhuoyue, Li, Junyan ORCID: https://orcid.org/0000-0003-4053-8334 and Zhu, Hanxing (2020) Relationship between the morphological, mechanical and permeability properties of porous bone scaffolds and the underlying microstructure. PLoS One, 15 (9) , e0238471. pp. 1-19. ISSN 1932-6203 [Article] (doi:10.1371/journal.pone.0238471)

[img]
Preview
PDF - Published version (with publisher's formatting)
Available under License Creative Commons Attribution.

Download (2MB) | Preview

Abstract

Bone scaffolds are widely used as one of the main bone substitute materials. However, many bone scaffold microstructure topologies exist and it is still unclear which topology to use when designing scaffold for a specific application. The aim of the present study was to reveal the mechanism of the microstructure-driven performance of bone scaffold and thus to provide guideline on scaffold design. Finite element (FE) models of five TPMS (Diamond, Gyroid, Schwarz P, Fischer-Koch S and F-RD) and three traditional (Cube, FD-Cube and Octa) scaffolds were generated. The effective compressive and shear moduli of scaffolds were calculated from the mechanical analysis using the FE unit cell models with the periodic boundary condition. The scaffold permeability was calculated from the computational fluid dynamics (CFD) analysis using the 4×4×4 FE models. It is revealed that the surface-to-volume ratio of the Fischer-Koch S-based scaffold is the highest among the scaffolds investigated. The mechanical analysis revealed that the bending deformation dominated structures (e.g., the Diamond, the Gyroid, the Schwarz P) have higher effective shear moduli. The stretching deformation dominated structures (e.g., the Schwarz P, the Cube) have higher effective compressive moduli. For all the scaffolds, when the same amount of change in scaffold porosity is made, the corresponding change in the scaffold relative shear modulus is larger than that in the relative compressive modulus. The CFD analysis revealed that the structures with the simple and straight pores (e.g., Cube) have higher permeability than the structures with the complex pores (e.g., Fischer-Koch S). The main contribution of the present study is that the relationship between scaffold properties and the underlying microstructure is systematically investigated and thus some guidelines on the design of bone scaffolds are provided, for example, in the scenario where a high surface-to-volume ratio is required, it is suggested to use the Fischer-Koch S based scaffold.

Item Type: Article
Additional Information: Data Availability Statement: The datasets used in the present study are available at https://doi.org/10.6084/m9.figshare.12721325.
Research Areas: A. > School of Science and Technology > Design Engineering and Mathematics
Item ID: 30981
Notes on copyright: © 2020 Lu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Useful Links:
Depositing User: Junyan Li
Date Deposited: 16 Sep 2020 07:57
Last Modified: 08 Dec 2020 21:17
URI: https://eprints.mdx.ac.uk/id/eprint/30981

Actions (login required)

View Item View Item

Statistics

Downloads
Activity Overview
26Downloads
29Hits

Additional statistics are available via IRStats2.