
This version is available at: http://eprints.mdx.ac.uk/2963/

Copyright:

Middlesex University Research Repository makes the University's research available electronically.

Copyright and moral rights to this work are retained by the author and/or other copyright owners unless otherwise stated. The work is supplied on the understanding that any use for commercial gain is strictly forbidden. A copy may be downloaded for personal, non-commercial, research or study without prior permission and without charge.

Works, including theses and research projects, may not be reproduced in any format or medium, or extensive quotations taken from them, or their content changed in any way, without first obtaining permission in writing from the copyright holder(s). They may not be sold or exploited commercially in any format or medium without the prior written permission of the copyright holder(s).

Full bibliographic details must be given when referring to, or quoting from full items including the author's name, the title of the work, publication details where relevant (place, publisher, date), pagination, and for theses or dissertations the awarding institution, the degree type awarded, and the date of the award.

If you believe that any material held in the repository infringes copyright law, please contact the Repository Team at Middlesex University via the following email address:

eprints@mdx.ac.uk

The item will be removed from the repository while any claim is being investigated.

See also repository copyright: re-use policy: http://eprints.mdx.ac.uk/policies.html#copy
The β-subunit of human chorionic gonadotrophin exists as a homodimer

S A Butler1, P Laidler2, J R Porter1, A T Kicman2, T Chard1, D A Cowan2 and R K Iles1

1Williamson Laboratory, Department of Obstetrics and Gynaecology, St Bartholomew’s and the Royal London School of Medicine and Dentistry, London, UK
2Drug Control Centre, King’s College London, Manresa Road, London SW3 6LX, UK

(Requests for offprints should be addressed to P Laidler, Drug Control Centre, King’s College London, Manresa Road, London SW3 6LX, UK or R K Iles, Williamson Laboratory, East Wing, St Bartholomew’s Hospital, West Smithfield, London EC1A 7BE, UK)

ABSTRACT

The free β-subunit of human chorionic gonadotrophin (hCGβ) is well recognised as a product of many epithelial tumours. Recently, it has been shown that this ectopic production may have a functional relationship to tumour growth. The growth-promoting activity of hCGβ may be explained by its structural similarity to a family of growth factors which all contain the same distinct topological fold known as the cystine-knot motif. Since the other members of this family all exhibit their activities as homo- and heterodimers, it is possible that the same may be true for hCGβ.

Using size-exclusion chromatography, low stringency SDS-PAGE and matrix assisted laser desorption/ionisation (MALDI) time-of-flight (TOF) mass spectrometry (MS) we have shown that pure preparations of hCGβ contain hCG$\beta \beta$ homodimers. Size-exclusion chromatography revealed asymmetric elution profiles with a forward peak corresponding to the size-exclusion characteristic of a globular protein with an approximate mass of 44–54 kDa and a late shoulder centered around an elution position expected for a globular protein of approximately 29 kDa. Two immunoreactive hCGβ species, of approximately 32 and 64 kDa, were clearly resolved by SDS-PAGE and Western blotting. When analysed by MALDI-TOF MS a \sim23 kDa monomer and a \sim46 kDa dimer were identified.

Formation of hCG$\beta \beta$ homodimers is consistent with the behaviour of other cystine-knot growth factors and strengthens the inclusion of the glycoprotein hormones within this superfamily. It has yet to be determined whether it is this dimeric molecular species that is responsible for growth-promoting activity of hCGβ preparations in tumours.

Journal of Molecular Endocrinology (1999) 22, 185–192

INTRODUCTION

Human chorionic gonadotrophin (hCG) is a member of the glycoprotein hormone family, which also includes luteinising hormone (LH), follicle-stimulating hormone and thyroid-stimulating hormone, all existing as $\alpha \beta$ heterodimers. The α-subunit is common to all members of the group and it is the β-subunits which confer the structural and functional identity of the heterodimer. Furthermore, only the intact heterodimer is functional; the free subunits do not exhibit gonadotropic or thyrotrophic activity. Therefore, any growth factor activity exhibited by the free β-subunit is generally regarded not to occur through the LH/hCG receptor, but via a novel pathway.

The free β-subunit of hCG (hCGβ) is widely used as a marker of Down’s syndrome (Spencer et al. 1992, Cuckle et al. 1994) and has been proposed as a prognostic marker for many epithelial tumours (Iles et al. 1996). In both situations the expression of hCGβ was regarded as having no biological significance. However, it has now been shown that the β-subunit may have its own unique functions. Lunardi-Iskandar et al. (1995) and Gillott et al. (1996) have shown growth inhibitory and growth stimulatory effects respectively of free hCGβ. Recently, elucidation of the crystal structure of hCG revealed a similar topology between hCGβ and transforming growth factor β (TGFβ), platelet derived growth factor β (PDGFβ) and nerve cell growth factor (NGF) (Lapthorn et al. 1994, Wu...
et al. 1994). The feature common to all four molecules is a unique group of three disulphide bridges in the centre of the molecule, the so called ‘cystine-knot motif’. It is interesting to note that the cystine-knot growth factors mediate their biological activity through the formation of homo- and/or heterodimers. In view of the recently reported biological activity of hCGβ (Gillott et al. 1996) and the structural similarities within this group of proteins, we have investigated the possible existence of an hCGβ homo-dimer using size-exclusion chromatography, SDS-PAGE and matrix-assisted laser desorption/ionisation (MALDI) time-of-flight (TOF) mass spectrometry (MS).

MATERIALS AND METHODS

Recombinant hCGβ subunit, which is expressed in a mammalian cell line, containing N- and O-linked carbohydrate moieties similar to those in authentic hCGβ, was purchased from Sigma Chemical Co. (Poole, Dorset, UK). The international reference preparation of free hCGβ, CR123, which is derived from splitting intact heterodimeric hCG isolated from pregnancy urine, was a kind gift from Dr Steven Birken (Columbia University, New York, USA) (Storring et al. 1980). MALDI matrices α-cyano-4-hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid (DHB), 3,5-dimethoxy-4-hydroxybenzoic acid (sinapinic acid (SA)) and 5-methoxysalicylic acid (MSA) were purchased from Aldrich Chemical Co. (Gillingham, Dorset, UK) and used without further purification.

Size-exclusion gel chromatography

Recombinant hCGβ and CR123 preparation hCGβ (100 µl at 50 µg/ml in 1% w/v BSA–PBS) were loaded onto a column (630 mm × 10 mm internal diameter) of Sephacryl S200HR via a Rheodyne (Berkeley, CA, USA) injection loop. The samples were then eluted with 0·1 M ammonium bicarbonate buffer (pH 7·4) by ascending flow at a rate of 0·3 ml/min using a Shimadzu (Kyoto, Japan) LC-6A HPLC pump. Eluted fractions (0·9 ml) were collected into polystyrene tubes containing 100 µl 10% w/v BSA–PBS. Buffer containing BSA was added to the collection tubes and at injection, in order to reduce the non-specific absorption of the proteins of interest to the column components and fraction vessels.

The column was calibrated using gel-exclusion chromatography globular protein markers (Sigma): Blue dextran (700 kDa – void volume), alcohol dehydrogenase (150 kDa), BSA (66 kDa) and carbonic anhydrase (29 kDa).

Assay for hCGβ

Fractions eluting from the size-exclusion column were assayed for total hCGβ using an in-house polyclonal RIA. This assay has been described by Iles (1991) and uses a polyclonal antiserum, S424, raised against the β-subunit of hCG, as binder and 125I-labelled CR123 free hCGβ as tracer. This assay recognises the β-subunit of hCG in the heterodimer of intact hCG, as the free subunit and the hCGβ degradation product β-core.

SDS PAGE and Western blotting

Electrophoresis was essentially carried out by the method described by Laemmli (1970). Recombinant hCGβ samples were separated on 10% acrylamide gels under both reducing and low stringency conditions using the Mighty Small II gel system (Hoefer, Amersham Pharmacia Biotech, St Albans, Herts, UK). Ten-microlitre samples of the recombinant hCGβ preparation (100 µg/ml) were combined with an equivolume of either non-reducing sample buffer (125 mM Tris–HCl, pH 6·8, 20% glycerol, 4% SDS, 0·02% bromophenol blue) or reducing sample buffer (containing 10% β-mercaptoethanol) before separation. The reducing sample was additionally heated for 3 min in a boiling water bath to ensure complete reduction of the thiol moieties; the low stringency sample was not heated. In both cases 14C-labelled Rainbow Molecular Mass Markers (Amersham Pharmacia Biotech) were subjected to the same conditions as the corresponding sample prior to separation. The separated proteins were transferred to polyvinylidene difluoride nylon membrane (Immobilon-P, Millipore, Sigma) using the Biometra Fastblot B32 semi-dry blotter (Anachem-Scotlab, Luton, Beds, UK), blocked, then probed overnight with monoclonal anti-hCGβ 1/07 (Quantum Biosystems Ltd, Cambridge, Cambs, UK) labelled with 125I by the chloramine-T method of Greenwood et al. (1963). Following multiple washes with PBS 0·1% Tween 20 (Sigma) the blot was exposed to Kodak X-OMAT AR imaging film and developed using the Kodak M35 X-OMAT processor (Kodak, Hemel Hempstead, Herts, UK).

MALDI-TOF MS

The matrices selected for this work are used widely in MALDI analysis, SA and a 9:1 (w/w) mixture of DHB with MSA, referred to as super-DHB.
(sDHB), being particularly useful for the analysis of glycoproteins (Kussmann et al. 1997). In addition, CHCA was chosen because relative to SA or sDHB it has a lower proton affinity (Burton et al. 1997) and is therefore more liable to favour dissociation of non-covalent complexes. Matrix solutions were prepared using HPLC grade acetonitrile (Fisher Scientific UK Ltd, Loughborough, Leics, UK) and purified water (Elgastat UHQ, High Wycombe, Bucks, UK). Solutions of SA and CHCA were prepared at 10 g/l in acetonitrile/water (70:30, v/v). sDHB (a 9:1 (w/w) mixture of DHB with MSA) (Karas et al. 1993), was prepared at a concentration of 20 g/l in acetonitrile/water (30:70, v/v). Recombinant hCGβ and the international reference preparation were prepared to concentrations of 0·8 and 0·4 mg/ml respectively in purified water.

Half-microlitre aliquots of hCGβ sample were mixed on the MALDI sample support with 0·5-1 µl matrix solution and allowed to air dry. Spectra were then generated using a LASERMAT 2000 mass spectrometer (Thermo Bioanalysis Ltd, Hemel Hempstead, Herts, UK). Light from a pulsed nitrogen laser (λmax=337 nm) was used to desorb ions from the samples and they were accelerated down a 0·5 m drift tube and detected by a micro-channel plate detector. The detector signal was digitised at a sampling rate of 500 MHz and transferred to a personal computer for data analysis. Spectra were generated by summing 20–35 laser shots and were calibrated externally using horse heart cytochrome C (12 360 Da) (Sigma).

RESULTS

Size-exclusion chromatography

The chromatogram of recombinant hCGβ revealed an asymmetric elution profile of immunoreactive material consisting of a forward peak eluting at a position corresponding to the Stokes’ radius of a globular protein of approximately 44 kDa in mass and a late shoulder approximating to a globular protein of 29 kDa. CR123β eluted in a similar manner with a forward peak of ~44–54 kDa and a late shoulder of ~29 kDa (Fig. 1).

SDS PAGE and Western blotting

Under low stringency (non-reducing) conditions two protein bands were separated by SDS-PAGE and following Western blotting were identified immunologically as hCGβ. The band with the higher molecular mass (hCGβ dimer) was exactly double (~64 kDa) that of the lower band corresponding to hCGβ monomer (~32 kDa).

MALDI-TOF MS

MALDI-TOF mass spectra of recombinant hCGβ analysed in SA, sDHB and CHCA matrices are shown in Figs 3, 4 and 5 respectively. All the spectra were characterised by peaks corresponding to the singly (m/z ~23 kDa) and doubly (m/z ~11·5 kDa) charged ions of hCGβ. Spectra generated in sDHB and SA also contain a peak at m/z...
246 kDa indicating the presence of a dimer of hCGβ. This peak was absent from the spectra acquired using CHCA as the matrix. The signal due to the doubly charged monomer was considerably more intense when CHCA was used as the matrix. In addition, an ion corresponding to the trebly charged hCGβ monomer was present in the CHCA spectra. Peaks corresponding to the singly and doubly charged ions of hCGβ were observed in the spectrum of the international reference preparation for hCGβ (CR123β) analysed in SA. The singly charged ion of an hCGβ homodimer was also present, albeit at low intensity (Fig. 6). The micro-heterogeneous nature of hCGβ, due primarily to variations in glycosylation, and in particular sialic acid content, results in the broad peaks characteristic of the generated spectra.

DISCUSSION

The ectopic production of free hCGβ is a well-recognised phenomenon in many epithelial tumours (Iles et al. 1990). Expression of hCGβ by these cancers was originally thought to carry no biological significance, but it is now apparent that this event may significantly affect tumour development given the growth effects described recently (Gillott et al. 1996). Similarly hCGβ has also been shown to induce regression in the AIDS-related tumour Kaposi’s sarcoma (Lunardi-Iskandar et al. 1995) and several studies on both in vitro and in vivo models report similar findings (Harris 1995, Gill et al. 1996). However, opinions differ as to the
identity of the actual functional component(s) in the preparations used in these studies; intact hCG (Harris 1995), hCGβ (Lunardi-Iskander et al. 1995), β-core (Kachra et al. 1997), the carboxy-terminal peptide of hCGβ (Albini et al. 1997) and an hCG associated factor, HAF (Lunardi-Iskandar et al. 1998), which may be a ribonuclease inhibitor (Griffiths et al. 1997), have all been proposed as the active molecule.

The individual α- and β-subunits of hCG share a distinctive topological folding pattern, known as the cystine-knot motif, with the growth factors TGFβ, NGF and PDGFβ (Murray-Rust et al. 1993, Sun & Davies 1995). Although all these growth factors bind to quite different receptor families, biological activity is achieved only through the formation of either hetero- and/or homodimers. TGFβ signalling in particular requires a ββ homodimer and PDGFβ forms ββ homodimers which initiate second messenger phosphorylation; PDGFβα heterodimers and PDGFαα homodimers are also known to initiate and control kinase activity (Heath 1993). The TGF and PDGF ββ homodimers are bound together ‘top to tail’ to yield the structure required for receptor binding and activation. This subunit association is very similar to that seen within the hCG heterodimer, in which the carboxy-terminal sequence of the β-subunit wraps around the α-subunit in a ‘seatbelt’ arrangement (Lapthorn et al. 1994). These structural similarities, together with the recently described growth-promoting activity of hCG (Gillott et al. 1996), suggest that the action may be brought about by an hCGββ homodimer. It is notable that homodimers of the α- and β-subunits of bovine LH have also been reported (Peng et al. 1997).

Furthermore it has been indicated that in high concentrations, β-core, a breakdown product of hCG and hCGβ, can also form homodimers (Iles 1991). In view of the very similar folding patterns of hCGβ and these growth factors, a possible candidate to mediate the growth factor activities of hCGβ is a putative hCGββ homodimer. Since free hCGβ is unable to activate the LH/hCG receptor and stimulate secondary messengers, the reported growth factor activities are assumed to proceed via novel, and as yet unidentified, pathways.

Our data support the existence of hCGββ homodimers in preparations of hCGβ which have previously been shown to exhibit growth factor activities. Intact hCG and free hCGβ have always been found to behave unusually on size-exclusion chromatography, eluting close to the void volume and at the expected position of human serum albumin (~70 kDa) on Sephadex G-100 size-exclusion columns (Bell et al. 1969, Canfield et al. 1971). This phenomenon is due to the extensive glycosylation of hCG and hCGβ, which affords them Stokes’ radii equivalent to globular molecules of over twice their mass (Butt et al. 1994). In this study we used Sephacryl 200HR size-exclusion matrix, which should resolve molecules with a Stokes’ radius of approximately 70 kDa in the middle of its chromatographic range (Kardana et al. 1991). As can be seen from Fig. 1 the major peak of hCGβ eluted at ~44–55 kDa but a significant late shoulder eluted at ~29 kDa. SDS-PAGE was more definitive with two species being resolved at ~32 and ~64 kDa respectively. With SDS-PAGE these species were only seen together when separated under low stringency conditions in which the sample was only exposed to SDS, non-reducing conditions and not boiled. Heating alone is sufficient to disrupt the αβ heterodimer of intact hCG releasing free subunits (Gau et al. 1984, Sancken & Bahner 1995) despite the seatbelt on the β-subunit holding the α-subunit in tight association. When stringent conditions of a disulphide reducing agent (β-mercaptoethanol), SDS and heating were employed only the ~32 kDa (monomeric) species could be seen (Fig. 2). The differences in assignment of molecular mass of the species between size-exclusion chromatography and SDS-PAGE can be ascribed to the imprecision of these techniques, which can only approximate molecular masses.
To optimise matrix-assisted ionisation in MALDI, the sample is generally mixed with a roughly equivalent volume of matrix, usually a cinnamic or benzoic acid derivative, dissolved in a mixture of acetonitrile and water/0.1% trifluoroacetic acid; the acidic nature of these conditions is generally considered to be sufficient to disrupt quaternary structures in most circumstances (Hillenkamp et al. 1991, Cohen et al. 1997). Nevertheless, in an earlier study we were able to demonstrate the quaternary structure of the intact hCG heterodimer by MALDI-TOF using an SA matrix (Laidler et al. 1995) and in this current investigation we have observed a mass ion akin to that expected of the ββ homodimer in SA and sDHB matrices. Of course, such mass spectral data alone are not unequivocal in showing the presence of the quaternary structure. As the subunits of hCG may be separated under very acidic conditions (Morbeck et al. 1994), it is reasonable to expect the same to be the case for a ββ homodimer. Recent work relating to the proton affinities of commonly used MALDI matrices demonstrated that CHCA has a lower proton affinity (183 ± 2 kcal/mol), and therefore a stronger acid, than either DHB or SA (both 204 ± 4 kcal/mol) (Burton et al. 1997). On that basis, the peak ascribed to the ββ homodimer, which was observed in the sDHB and SA matrices, would be expected to be attenuated when the CHCA matrix was employed, unless the peak was an artefact due to the ionisation process. Using the CHCA matrix, the peak was so attenuated as for it to be impossible to locate the homodimer. Hence, the contrast in results by MALDI, using different matrices, also supports the presence of the ββ homodimer.

An important factor that influences the stability of the quaternary structure in the heterodimer, and by implication the ββ homodimer, is the large contact surface area between the two interacting subunits; a surface area of approximately 4000 Å² is buried by subunit binding (Lapthorn et al. 1994, Wu et al. 1994). The amount of contact surface area of the heterodimer is in contrast to the area of 600–900 Å² (Novotny et al. 1983, Amit et al. 1986) of an antibody–antigen complex which is completely dissociated by MALDI sample preparation (Nelson et al. 1995).

The quaternary structure of a ββ homodimer could be similar in nature to that of the hCGαβ heterodimer. The individual subunits are aligned within the heterodimer in a ‘head to tail’ manner and are stabilised by a structure, nicknamed the seatbelt, formed when residues 90–110 of the β-subunit wrap around the α-subunit before the formation of a last disulphide bond between residues 26 and 110 of the β-subunit. While formation of the cystine residue 26–110 prior to subunit contact would appear to hinder extracellular subunit association (Huth et al. 1993), the seatbelt also presents a barrier to heterodimer dissociation; hCG exists in the circulation at concentrations of 10^{-9} to 10^{-11} M despite an equilibrium constant for subunit interaction of approximately 10^{-6} M (Strickland & Puett 1982, Ryan et al. 1988). One may expect a mature ββ homodimer to be more stable than the hCGαβ heterodimer since its dissociation into hCGβ monomers could require two seatbelt-like structures to be reduced rather than one. Should this be the case, it is likely that an hCGββ species intermediate between the monomer and a fully stable hCGββ homodimer, containing only one seatbelt, also exists. We would expect such an intermediate species to exhibit a stability similar to that of the hCGαβ heterodimer.

Since biological activities, not mediated through the LH/hCG receptor, have been described for both the α- and β-subunits it is reasonable to suggest that a novel molecular structure may be involved (Blithe et al. 1991, Blithe 1994, Lunardi-Iskandar et al. 1995, Gillott et al. 1996). The experimental data presented here suggest that a ββ homodimer is a possible mediator of the previously reported growth factor activities. The formation of such dimeric molecular species may arise from post-translational events such as glycosylation, which have, in the α-subunit, been shown to prevent αβ heterodimer formation (Blithe et al. 1991). Similar modifications in glycosylation of hCGβ may favour the formation of the ββ homodimer rather than the αβ heterodimer. It is not yet known if homodimers form in vivo, but the concentrations analysed here may be comparable with local tissue concentrations. It would, therefore, be feasible to suggest that a proportion of ectopically produced free hCGβ may exist as a homodimer.

It has not yet been determined whether the ββ homodimer described here is responsible for the growth-promoting activities of hCGβ. However, the demonstration of an hCGββ homodimer makes it less likely that the responses seen are due to an interaction with the LH/hCG receptor and reinforce the view that a novel receptor may be involved. In addition, the predisposition of proteins containing the cystine-knot motif to form homodimers suggests that hCGβ may possibly form heterodimers with other growth factor subunits,
thereby creating unique molecules with multifunctional roles.

In conclusion, the results from this investigation support the presence of an hCGβ homodimer. This unique species may be responsible for the novel biological activities recently attributed to the free β-subunit, and could play a key role in tumour growth regulation and metastatic control.

ACKNOWLEDGEMENTS

This work was part funded by grants from the Joint Research Board of St Bartholomew’s Hospital, London, the Vandervell Foundation and the Garfield Weston Foundation.

REFERENCES

Kaposi’s sarcoma cell line in immunodeficient mice blocked by a human pregnancy hormone. *Nature* **375** 64–68.

REVISED MANUSCRIPT RECEIVED 15 SEPTEMBER 1998