
Final accepted version (with author's formatting)

This version is available at: http://eprints.mdx.ac.uk/26290/

Copyright:

Middlesex University Research Repository makes the University's research available electronically. Copyright and moral rights to this work are retained by the author and/or other copyright owners unless otherwise stated. The work is supplied on the understanding that any use for commercial gain is strictly forbidden. A copy may be downloaded for personal, non-commercial, research or study without prior permission and without charge.

Works, including theses and research projects, may not be reproduced in any format or medium, or extensive quotations taken from them, or their content changed in any way, without first obtaining permission in writing from the copyright holder(s). They may not be sold or exploited commercially in any format or medium without the prior written permission of the copyright holder(s).

Full bibliographic details must be given when referring to, or quoting from full items including the author's name, the title of the work, publication details where relevant (place, publisher, date), pagination, and for theses or dissertations the awarding institution, the degree type awarded, and the date of the award.

If you believe that any material held in the repository infringes copyright law, please contact the Repository Team at Middlesex University via the following email address:

eprints@mdx.ac.uk

The item will be removed from the repository while any claim is being investigated.

See also repository copyright: re-use policy: http://eprints.mdx.ac.uk/policies.html#copy
Effect of glycosaminoglycans on growth factor-stimulated trophoblast invasion

Imeobong Antia1, Zoe Rodd2, Frank Hills1
1Middlesex University, London, United Kingdom. 2Imperial College, London, United Kingdom

Objectives
To determine the effect of glycosaminoglycans and a series of growth factors on the viability and invasion of the extravillous trophoblast cell line SGHPL4.

Methods
Cells were cultured in Hams F10 media supplemented with fetal bovine serum and L-glutamine. For viability studies cells were seeded into 96-well culture plates (10⁴ cells/well), maintained in serum free medium for 24h and then incubated with glycosaminoglycans (heparin, heparin sulphate and hyaluronic acid; each 100ng/ml) ± growth factors (VEGF, FGF and HB-EGF). Cell viability was measured in cells using the MTS assay. Cellular invasion was assessed using the FluoroBlok invasion assay. Cells were serum-starved for 24 h, incubated with the fluorescent dye DiiC₁₂(3) (10µg/ml) for 1 hour prior to seeding onto an artificial extracellular matrix-coated 8 mm FluoroBlok porous membrane inserts (2.5 x 10⁵ cells per insert). Growth factors ± GAGs were added to the cell suspension and the inserts were lowered into a 96-well plate containing 10% fetal calf serum. Plates were incubated at 37°C for 24h. Invasion was determined by measurement of fluorescence of invaded cells using a fluorescent plate reader (Ex549/Em565 nm).

Results
Cell numbers were significantly increased following incubation with VEGF, FGF and HB-EGF. Cell number was also increased after incubation with each of the glycosaminoglycans tested. The largest increase was observed following incubation with heparin sulphate. Cell numbers were further increased when the GFs were incubated with HS and heparin, but not with hyaluronic acid. Invasion was increased following incubation with VEGF, HBEGF and HGF. Heparan sulphate and heparin increased invasiveness in a dose-dependent manner. In contrast, hyaluronic acid had no significant effect.

Conclusion
This study demonstrates a role for glycosaminoglycans in key features of trophoblast function.