
Published version (with publisher’s formatting)

This version is available at: http://eprints.mdx.ac.uk/23838/

Copyright:

Middlesex University Research Repository makes the University's research available electronically. Copyright and moral rights to this work are retained by the author and/or other copyright owners unless otherwise stated. The work is supplied on the understanding that any use for commercial gain is strictly forbidden. A copy may be downloaded for personal, non-commercial, research or study without prior permission and without charge.

Works, including theses and research projects, may not be reproduced in any format or medium, or extensive quotations taken from them, or their content changed in any way, without first obtaining permission in writing from the copyright holder(s). They may not be sold or exploited commercially in any format or medium without the prior written permission of the copyright holder(s).

Full bibliographic details must be given when referring to, or quoting from full items including the author's name, the title of the work, publication details where relevant (place, publisher, date), pagination, and for theses or dissertations the awarding institution, the degree type awarded, and the date of the award.

If you believe that any material held in the repository infringes copyright law, please contact the Repository Team at Middlesex University via the following email address:

eprints@mdx.ac.uk
The item will be removed from the repository while any claim is being investigated.
See also repository copyright: re-use policy: http://eprints.mdx.ac.uk/policies.html#copy
Apple cider vinegar (ACV®) displays antimicrobial activity directly against *Escherichia coli*, *Staphylococcus aureus* and *Candida albicans* proteins and *in vitro* monocytes exposed to microbes by inhibiting inflammatory cytokine secretion

Darshna Yagnik, Vlad Serafim, Manika Choudhary and Ajit Shah
Middlesex University, United Kingdom

Introduction: Extraintestinal pathogenic *Escherichia coli* (E-coli) are the most frequent cause of blood borne, urinary tract and hospital acquired infections. *Candida albicans* and *S. aureus* infections can also pose a huge threat especially following transplantation and to immunocompromised patients. Globally, there is a growing need for novel anti-microbial agents to target microbes and multi drug resistance from bacterial, fungal associated infections.

Aim: The aim of this study was to investigate the potential anti-microbial effects of ACV®. We used microbial strains: E-coli strain 6571, C. albicans strain 90828 and S. aureus purchased from ATCC. We tested the effect of commercial ACV® directly on microbial cultures over a 24-hour period, measuring inhibition zones. We also looked at whether ACV® could have an anti-inflammatory effect in vitro. This was tested using human blood derived monocytes which were incubated with microbes and AVC®. Collected supernatants were analyzed for pro-inflammatory cytokine secretion by ELISA.

Results: ACV® could significantly inhibit E-coli growth demonstrated by the results of direct co-culture with each of the microbial inoculum and ACV® in varying concentrations. The zone of inhibition with the addition of ACV® to each of the microbes varied dose dependently ACV® concentration. For C. albicans and S. aureus, concentrated ACV® had the strongest effect, whereas on E-coli cultures, the most potent effect was visible at lower dilutions including 1/50 dilution of the neat solution (p<0.05). When monocytes were cultured with both microbes they secreted inflammatory cytokines (TNFα, IL-6) ACV® was effective in significantly inhibiting inflammatory cytokine secretion in human peripheral blood monocytes cultured with E-coli, S. aureus and C. albicans. We also showed that ACV® can damage the microorganism protein moieties after 24-hours.

Conclusion & significance: ACV® displayed potent anti-microbial and anti-inflammatory activity against E-coli and C. albicans. We propose that ACV® could be potentially therapeutic.