
This version is available at: http://eprints.mdx.ac.uk/20564/

Copyright:

Middlesex University Research Repository makes the University's research available electronically.

Copyright and moral rights to this work are retained by the author and/or other copyright owners unless otherwise stated. The work is supplied on the understanding that any use for commercial gain is strictly forbidden. A copy may be downloaded for personal, non-commercial, research or study without prior permission and without charge.

Works, including theses and research projects, may not be reproduced in any format or medium, or extensive quotations taken from them, or their content changed in any way, without first obtaining permission in writing from the copyright holder(s). They may not be sold or exploited commercially in any format or medium without the prior written permission of the copyright holder(s).

Full bibliographic details must be given when referring to, or quoting from full items including the author's name, the title of the work, publication details where relevant (place, publisher, date), pagination, and for theses or dissertations the awarding institution, the degree type awarded, and the date of the award.

If you believe that any material held in the repository infringes copyright law, please contact the Repository Team at Middlesex University via the following email address:
eprints@mdx.ac.uk

The item will be removed from the repository while any claim is being investigated.

See also repository copyright: re-use policy: http://eprints.mdx.ac.uk/policies.html#copy
An Analytical Channel Model for Emerging Wireless Networks-on-Chip

Michael Opoku Agyeman¹, Quoc-Tuan Vien², Terrence Mak³

¹Department of Computer and Immersive Technologies, University of Northampton, Email: Michael.OpokuAgyeman@northampton.ac.uk
²School of Science and Technology, Middlesex University, London, UK, Email: Q.Vien@mdx.ac.uk
³ECS, Faculty of Physical Sciences and Engineering, University of Southampton, Email: tmak@ecs.soton.ac.uk

Abstract—Recently wireless Networks-on-Chip (WiNoCs) have been proposed to overcome the scalability and performance limitations of traditional multi-hop wired NoC architectures. However, the adaptation of wireless technology for on-chip communication is still in its infancy. Consequently, several challenges such as simulation and design tools that consider the technological constraints imposed by the wireless channel are yet to be addressed. To this end, in this paper, we propose and efficient channel model for WiNoCs which takes into account practical issues and constraints of the propagation medium, such as transmission frequency, operating temperature, ambient pressure and distance between the on-chip antennas. The proposed channel model demonstrates that total path loss of the wireless channel in WiNoCs suffers from not only dielectric propagation loss (DPL) but also molecular absorption attenuation (MAA) which reduces the reliability of the system.

I. INTRODUCTION

Recently, System-on-Chip (SoC) has emerged to combine several components such as processors, peripherals, memory blocks and power management circuits on a single integrated circuit (IC) as one of the most interesting solutions in embedded applications [1]. A dominant issue with next generation multi-core design arises from the nonscalable wire delays and power consumption of the on-chip communication infrastructure. These issues have attracted a lot of research over the past few years, such as the maximum number of cores per shared bus, efficient application mapping, reliability and efficient arbitration for accessing shared bus. To compensate for the fast-paced technological scalability with the performance bottleneck of conventional metal based interconnects (wireline), the research for alternative interconnect fabrics such as optical networks, three dimensional integrated circuits (3-D ICs) and millimeter wave (mm-wave) has emerged for SoC design [1]–[6]. In optical interconnects a photon needs to be converted back to electrons to be stored in the electronic circuitry. Consequently, optical networks have a high design complexity as well as high power, area, and latency overheads. On the other hand, though 3-D ICs are Complementary Metal Oxide Semiconductor (CMOS) compatible and have shorter vertical links with enhanced scalability, 3D integration is still in its infancy due to alignment, low yield and high temperature dissipation issues in the current technology which lowers the reliability of system [7]–[9].

RF interconnect has low area and low power consumption due to its CMOS compatibility. However, RF interconnect relies on long transmission lines for guided data transmission which requires alignment between transmission pairs. Mm-Wave, has emerged as a more feasible solution with promising CMOS components that can scale with transistor technology. Consequently, Wireless Network-on-Chip (NoC) has been proposed as a more promising solution to these issues and has gained the attention of many researchers in this field of study [10]. WiNoCs adopt mm-Wave enabled routers and packet or circuit switching to handle data communication in a multi-core system. Recent research shows that WiNoCs outperforms its more conventional wired counterpart [11] with low power consumption and reduced latency between remote cores. However, WiNoC is still in its infancy and several challenges are currently being addressed to facilitate its acceptance as a mainstream interconnect fabric and bridge the widening gap between computation complexity and communication efficiency for emerging SoC design [10]. Particularly, new design evaluation tools must account for the constraints imposed by the wireless interface. Compared to wireline NoCs, the critical difference is the model of wireless propagation channel in WiNoCs.

In order to more accurately simulate and evaluate the actual performance of system, a wireless propagation channel model is required. In this paper, We propose a parameterizable wireless channel model to evaluate the losses in emerging WiNoCs. Considering both line-of-sight and reflective transmission in traditional WiNoCs an on-chip reflection channel model which accounts for the transmission medium and built-in material of a practical chip is developed. Simulation results of the proposed channel model reveals that the performance degradation due to separation distance between on-chip antennas is higher with low reliability compared to a conventional channel modeled over DPL space. We demonstrate that, the total path loss of the signal transmission consists of both dielectric propagation loss (DPL) and molecular absorption attenuation (MAA). As a second contribution of the paper, we evaluate the effects of the medium compositions within the chip package on the total noise temperature of a WiNoC. The noise temperature and path loss model caused by the molecular absorption are shown to have a significant impact on the capacity of the WiNoC. It is also observed that transmission along the wireless channel in WiNoCs is less efficient compared to conventional wireless channel model with no MAA, even when the transmission distance between two antennas is very small (less than 0.01 mm).

The rest of the paper is organized as follows. Section II presents current contributions on WiNoCs. Section III evaluates the performance effect of wireless channel on NoCs. Sections IV and V present the system model and propose a parameterizable channel model for WiNoCs, respectively. Experimental result in Section VI validates the significance
of the proposed channel model. Finally, the main findings are concluded in Section VII.

II. RELATED WORK

One of the key problems with WiNoCs identified in [12] is the transmission reliability of the wireless channel. As an effort to address this issue, Ganguly et al. [13] proposed an error control coding for WiNoCs. By implementing a joint crosstalk triple error correction and simultaneous quadruple error detection codes in the wire line links and Hamming code-based product codes in the wireless links with Carbon Nanotube (CNT) antennas, it was demonstrated that, the reliability of the wireless channel could be improved. Similarly, ECC has been adapted in [11] to improve the reliability of WiNoCs. However, ECC introduces timing, area and packet overheads which affects the overall transmission efficiency of the WiNoC [14]. Alternatively, Lee et al. [14] adopted an overhearing scheme for WiNoCs. Here a zero-signaling-overhearing-and-retransmission is presented to manage the packet loss along the wireless channel. A checksum-based error-detection and retransmission scheme at the last hop. Vijayakumaran et al. [15] presented an improved filter design to enhance the performance as well as reduce the error probability of incurred by synchronization delays in CDMA based WiNoCs. However, these techniques rely on the underlying lossy wireless communication fabric for retransmission of handshake signals, erroneous and non-erroneous packets.

In order to accurately model the reliability of the wireless channel in WiNoCs for simulation and evaluation, a parameterizable channel model that considers the on-chip constraints is required. Among the key challenges of the channel modeling for WiNoC presented in [16], it is emphasized that no comprehensive work on on-chip channel modeling has been reported. Therefore, considering the deployment of antennas operating in the GHz band in a practical chip, the contribution of the paper is to investigate the effects of various on-chip propagation constraints on the performance of WiNoCs.

III. EFFECT OF WIRELESS CHANNEL ON NOCS

To demonstrate the effect of wireless channel on the performance of NoCs, we have performed simulations in Ansys High Frequency Structured Simulator [17]. Here, a zigzag antennas which is considered to be the most efficient antenna for mm-Wave on-chip communication is employed. The zigzag antennas are separated by a distance of only 20mm.

Fig. 1 compares the S_{21} (dB) of different technologies. It can be seen that, the S_{21} of mm-Wave is around -36dB which is significantly lower than that of the wireline communication fabric. Moreover, though wireline can achieve a high signal strength, its transmission frequency is inhibited by induced coupling, crosstalk and temperature induced noises [13]. Consequently, when employed as the wireless communication medium for WiNoCs, the high BER of mm-Wave reduces the reliability of the NoC. Fig. 2 shows that, for a fixed signal to noise ratio (SNR) of a communication fabric with an attenuation constant α, the improvement in rate of change in transmission gain $G_{0, db}$ for a receiver node placed at d'(m) from a transmitting node at d which is given by:

$$G_{0, db} = \frac{-20}{T_{(d-d'),ps}} \left(\log_{10} \left(\frac{d'}{d} \right) + \alpha(d' - d) \log_{10} e \right) \tag{1}$$

from a transmitting node at d which is given by:

$$G_{0, db} = \frac{-20}{T_{(d-d'),ps}} \left(\log_{10} \left(\frac{d'}{d} \right) + \alpha(d' - d) \log_{10} e \right) \tag{1}$$

of mm-Wave over wireline increases significantly as the separation between transmitting node and receive node increases. In the wireline channels, there is no need for transceiver circuits to convert wireless signals. Hence at low distances, wireline is more efficient than the wireless communication fabric. However, the delay along the wires have drastic effects which cause significant drop in the rate of transmission gain as the distance to destination node increases. Therefore in this paper, a wireless channel model is proposed to analyse the transmission loss components in order to evaluate the reliability of WiNoCs.

IV. ON-CHIP WIRELESS SIGNAL PROPAGATION

In order to understand the reduction in performance of WiNoCs due to the reliability issues of wireless channel, it is important to characterize the traditional mm-Wave transmission channel for on-chip wireless communication.

Fig. 3 illustrates a typical WiNoC architecture where two cores C_T and C_S the transmitter and receiver cores, respectively, communicate via mm-Wave channel. Here, we consider a metal cube enclosure as the package with a longest rectangular side of d_C and a height of $h \ll d_C$. Let h_T
and h_R denote the height of the mm-Wave antennas (zigzag antennas) at C_T and C_R, respectively. The material property of the transmission medium between C_T and C_R is assumed to be time-invariant over the transmission of a data frame and changes independently from one frame to another11. Let d denote the distance of separation between C_T and C_R. Accounting for chip floorplanning and hence in order to avoid the placement of the cores on/near the edges of the package, d should be less than $d_{\text{max}} = d_C \sqrt{2}$. To accurately model the wireless channel interface of existing WiNoCs, the absorption and resonance of the medium compositions within the chip package should be taken into account, especially in the high frequency band of modern multi-core design. Specifically, various molecules and their isotopologues may cause molecular absorption attenuation (MAA) at various frequency bands 18. Therefore, the signal transmission between C_T and C_R in Fig. 3 suffers from the path loss caused by not only the dielectric propagation loss (DPL) but also the MAA.

For convenience, the main notation and the well-known constants used in this paper are listed in Tables I and II, respectively.

V. PROPOSED WIRELESS CHANNEL MODEL

We evaluate the wireless communication fabric for existing WiNoCs. Unlike the conventional channel models for the macro-world, on-chip communication introduces new constraints and challenges. Hence in order to study the effect of the wireless channel on the performance of on-chip communication, we propose a channel model that considers the physical dynamics of multi-core communication. In the proposed channel model, the total path loss of electromagnetic signal transmission from C_T to C_R within the chip package consists of DPL and MAA.

A. Dielectric Propagation Loss (DPL)

It can be observed in Fig. 3 that the data transmission between two cores can be carried out via both direct line-of-sight (LoS) and reflected transmission. Therefore, in this paper,

$$|E_T(d, f)| = |E_L(d, f) + E_R(d, f)| = 2E_0d_0 \frac{\sin \left(\frac{\theta(d, f)}{2} \right)}{d},$$

where E_0 [V/m] is the dielectric E-field at a reference distance d_0 [m] and $\theta(d, f)$ [rad] is the phase difference between the two E-field components. Hence, $\theta(d, f)$ can be approximated

\[\text{TABLE I. SUMMARY OF NOTATION} \]

<table>
<thead>
<tr>
<th>Notation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>d [m]</td>
<td>distance between two mm-Wave antennas</td>
</tr>
<tr>
<td>d_C [m]</td>
<td>longest rectangular side of the chip package</td>
</tr>
<tr>
<td>d_0 [m]</td>
<td>reference distance</td>
</tr>
<tr>
<td>h [m]</td>
<td>height of the chip package</td>
</tr>
<tr>
<td>h_T, h_R [m]</td>
<td>elevation of the mm-Wave antennas at C_T, C_R, respectively</td>
</tr>
<tr>
<td>f [Hz]</td>
<td>transmission frequency</td>
</tr>
<tr>
<td>B [Hz]</td>
<td>channel bandwidth</td>
</tr>
<tr>
<td>γ [atm]</td>
<td>ambient pressure applied on chip</td>
</tr>
<tr>
<td>p_0 = 1 atm</td>
<td>reference pressure</td>
</tr>
<tr>
<td>T_E [K]</td>
<td>system electronic noise temperature</td>
</tr>
<tr>
<td>T_{MA} [K]</td>
<td>molecular absorption noise temperature</td>
</tr>
<tr>
<td>T^*_i [K]</td>
<td>other noise source temperature</td>
</tr>
<tr>
<td>$T_{th} = 273.15$ K</td>
<td>temperature at standard pressure</td>
</tr>
<tr>
<td>L_{E_0, E_R}</td>
<td>DPL, MAA, total path loss, respectively</td>
</tr>
<tr>
<td>E_L, E_R [V/m]</td>
<td>line-of-sight, reflected components of E-field</td>
</tr>
<tr>
<td>θ [rad]</td>
<td>phase difference between E_L and E_R</td>
</tr>
<tr>
<td>P_T, P_R [W]</td>
<td>transmitted power, received power</td>
</tr>
<tr>
<td>C_T, C_R</td>
<td>transmitter antenna gain, receiver antenna gain</td>
</tr>
<tr>
<td>α</td>
<td>transmittance of a medium</td>
</tr>
<tr>
<td>$\alpha_{i, g}$</td>
<td>medium absorption coefficient of gas g</td>
</tr>
<tr>
<td>α_{iso}</td>
<td>individual absorption coefficient of gas g</td>
</tr>
<tr>
<td>$Q^{a, b}$ [mol/m2]</td>
<td>molecular volumetric density of gas g</td>
</tr>
<tr>
<td>$\sigma^{a, b}$ [m2/mol]</td>
<td>absorption cross section of gas g</td>
</tr>
<tr>
<td>$\rho^{a, b}$ [mol/mol]</td>
<td>mixing ratio of gas g</td>
</tr>
<tr>
<td>$S^{a, b}$ [m2/mol]</td>
<td>line density for the absorption of gas g</td>
</tr>
<tr>
<td>$f^{a, b}$ [Hz]</td>
<td>spectral line shape of gas g</td>
</tr>
<tr>
<td>f^{iso} [Hz]</td>
<td>resonant frequency of gas g</td>
</tr>
<tr>
<td>$\Delta f^{a, b}$ [Hz]</td>
<td>resonant frequency of gas g at $p_0 = 1$ atm</td>
</tr>
<tr>
<td>$\nu^{a, b}$ [Hz$^{-1}$]</td>
<td>Van Vleck-Weisskopf asymmetric line shape 19</td>
</tr>
<tr>
<td>$\delta^{a, b}$ [Hz]</td>
<td>linear pressure shift of gas g</td>
</tr>
<tr>
<td>$\alpha_L^{a, b}$ [Hz]</td>
<td>Lorentz half-width of gas g 19</td>
</tr>
<tr>
<td>γ [mol/mol]</td>
<td>broadening coefficient of air</td>
</tr>
<tr>
<td>$\eta^{a, b}$ [Hz]</td>
<td>broadening coefficient of gas g</td>
</tr>
<tr>
<td>τ</td>
<td>temperature broadening coefficient</td>
</tr>
</tbody>
</table>

\[\text{TABLE II. LIST OF CONSTANTS} \]

<table>
<thead>
<tr>
<th>Constant name</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avogadro constant</td>
<td>\mathcal{A}</td>
<td>6.0221×10^{23} mol$^{-1}$</td>
</tr>
<tr>
<td>Boltzmann constant</td>
<td>k_B</td>
<td>1.3806×10^{-23} J/K</td>
</tr>
<tr>
<td>Gas constant</td>
<td>\mathcal{C}_G</td>
<td>8.2054×10^{-5} m3/atm/mol</td>
</tr>
<tr>
<td>Light speed constant</td>
<td>c_0</td>
<td>2.9979×10^8 m/s</td>
</tr>
<tr>
<td>Planck constant</td>
<td>\hbar</td>
<td>6.6262×10^{-34} Js</td>
</tr>
</tbody>
</table>

we develop a two-ray within-package reflection mode mm-Wave NoCs where the total received E-field $E_T(d, f)$ [V/m] at d_C consists of the LoS component $E_L(d, f)$ [V/m] and the reflected component $E_R(d, f)$ [V/m]. Summing up these two components, we have

\[|E_T(d, f)| = |E_L(d, f) + E_R(d, f)| = 2E_0d_0 \frac{\sin \left(\frac{\theta(d, f)}{2} \right)}{d}, \]

Note that there are various molecules of the gas within the material substance which may change over time. For simplicity, we consider quasi-static channel model in this work.
by [20]
\[\theta(d,f) \approx \frac{4\pi h_T h_R f}{c_L d}, \]
(3)
where \(h_T \) [m] and \(h_R \) [m] denote the height of the antennas at \(C_T \) and \(C_R \), respectively, and \(c_L = 2.9979 \times 10^8 \) m/s is the speed of light in the vacuum.

From (2) and (3), the received power \(P_R(d,f) \) [W] at \(C_R \) can be computed by
\[P_R(d,f) = \left| E_T(d,f) \right|^2 G_R \frac{\sin^2 \left(\frac{2\pi h_T h_R f}{c_L d} \right)}{480\pi^2 f^2} \]
(4)
where \(G_R \) denotes the antenna gain at \(C_R \). Note that the equivalent isotropically radiated power (EIRP) is given by
\[EIRP = P_T G_T = \frac{E_T^2 d_T^2}{120\pi^2 f^2} \]
(5)
where \(P_T \) [W] and \(G_T \) denote the transmitted power and gain of the mm-Wave antenna at \(C_T \), respectively. From (4) and (5), \(P_R \) can be given by
\[P_R(d,f) = \frac{P_T G_T G_R}{2\pi df/c_L} \sin^2 \left(\frac{2\pi h_T h_R f}{c_L d} \right). \]
(6)
Therefore, the DPL between \(C_T \) and \(C_R \) (i.e. \(L_a(f,d) \)) is obtained by
\[L_a(f,d) = \left(\frac{2\pi df}{c_L} \right)^2 \frac{1}{G_T G_R} \csc^2 \left(\frac{2\pi h_T h_R f}{c_L d} \right). \]
(7)

B. Molecular Absorption Attenuation (MAA)

The transmission of electromagnetic waves at frequency \(f \) through a transmission medium of distance \(d \) introduces MAA due to various molecules within the material substance. Applying Beer-Lambert’s law to atmospheric measurements, the MAA of the data transmission from \(C_T \) to \(C_R \) (i.e. \(L_a(f,d) \)) can be determined by:
\[L_a(f,d) = \frac{1}{\tau(f,d)} = \omega e^{\kappa(f)d}, \]
(8)
where \(\tau(f,d) \) and \(\kappa(f) \) [m\(^{-1}\)] are the transmittance and absorption coefficient of the medium, respectively. Here, \(\kappa(f) \) depends on the composition of the medium (i.e. particular mixture of molecules along the channel) and it is given by:
\[\kappa(f) = \sum_{i,g} \kappa^{(i,g)}(f), \]
(9)
where \(\kappa^{(i,g)}(f) \) [m\(^{-1}\)] denotes the individual absorption coefficient for the isotopologue \(i \) of gas \(g \). For simplicity in representation, the isotopologue \(i \) of gas \(g \) is hereafter denoted by \((i,g) \).

Applying radiative transfer theory [21], \(\kappa^{(i,g)}(f) \) can be determined by
\[\kappa^{(i,g)}(f) = \frac{p}{p_0} \frac{T_f}{T_S} \Omega^{(i,g)} \zeta^{(i,g)}(f), \]
(10)
where \(p \) [atm] is the ambient pressure applied on the designed SoC, \(T_S \) [K] is the system electronic noise temperature, \(p_0 = 1 \) atm is the reference pressure, \(T_p = 273.15 \) K is the temperature at standard pressure, \(Q^{(i,g)} \) [mol/m\(^3\)] is the molecular volumetric density (i.e. number of molecules per volume unit of \((i,g) \)) and \(\zeta^{(i,g)}(f) \) [m/mol] is the absorption cross section of \((i,g) \). Here, \(Q^{(i,g)} \) is obtained by the Ideal Gas Law as
\[Q^{(i,g)} = \frac{p}{\zeta^{(i,g)} c_A}, \]
(11)
where \(\zeta_A = 8.2051 \times 10^{-5} \) m\(^3\)atm/K/mol is the Gas constant, \(c_A = 6.0221 \times 10^{23} \) mol\(^{-1}\) is the Avogadro constant and \(q^{(i,g)} \) [%] is the mixing ratio of \((i,g) \).

In (10), \(\zeta^{(i,g)}(f) \) is given by
\[\zeta^{(i,g)}(f) = \left(\frac{f}{f_1^{(i,g)}} \right)^\omega \tanh \left(\frac{\zeta^{(i,g)}(f)}{2T_f T_S} \right) \zeta^{(i,g)}(f), \]
(12)
where \(f_1^{(i,g)} \) [Hz/mol] is the line density for the absorption of \((i,g) \) (i.e. the absorption peak amplitude of \((i,g) \)) and \(\zeta^{(i,g)}(f) \) is spectral line shape of \((i,g) \) determined by
\[\zeta^{(i,g)}(f) = \frac{f}{f_1^{(i,g)}} \left(\frac{s^{(i,g)}(f)}{2T_f T_S} \right) \tanh \left(\frac{\zeta^{(i,g)}(f)}{2T_f T_S} \right) \zeta^{(i,g)}(f), \]
(13)
where \(f_1^{(i,g)} \) [Hz] is the resonant frequency of \((i,g) \), \(\Omega_p = 6.6262 \times 10^{-33} \) Js is the Planck constant, \(\Omega_B = 1.3806 \times 10^{-23} \) J/K is the Boltzmann constant and \(v^{(i,g)}(f) \) [Hz\(^{-1}\)] is the Van Vleck-Weisskopf asymmetric line shape of \((i,g) \). In (13), \(f_1^{(i,g)} = f_1^{(i,g)} + \tilde{g}^{(i,g)} p / p_0 \)
(14)
where \(f_1^{(i,g)} \) [Hz] is the resonant frequency of \((i,g) \) at reference pressure \(p_0 = 1 \) atm and \(\tilde{g}^{(i,g)} \) [Hz] is the linear pressure shift of \((i,g) \). Also, the Van Vleck-Weisskopf asymmetric line shape of \((i,g) \) in (13) is given by
\[v^{(i,g)}(f) = 100\kappa_L \frac{\alpha_L^{(i,g)} f}{\pi} \left[\frac{1}{(f + f_1^{(i,g)})^2 + (\alpha_L^{(i,g)})^2} \right], \]
(15)
where \(\alpha_L^{(i,g)} \) [Hz] is the Lorentz half-width of \((i,g) \). Here, \(\alpha_L^{(i,g)} \) is computed by
\[\alpha_L^{(i,g)} = \left(1 - q^{(i,g)} \right) \alpha_0 + q^{(i,g)} \tilde{g}^{(i,g)} \right) \frac{p}{p_0} \left(\frac{T_f}{T_S} \right) \right)^\omega, \]
(16)
where \(\alpha_0 \) [Hz] is the broadening coefficient of air, \(\tilde{g}^{(i,g)} \) [Hz] is the broadening coefficient of \((i,g) \), \(T_0 = 296 \) K is the reference temperature and \(\omega \) is the temperature broadening coefficient. Let \(L(f,d) \) denote the total path loss for signal transmission at frequency \(f \) [Hz] over distance \(d \) [m]. From (7), (8) and (9), the total path loss of the proposed channel model is
\[L(f,d) = L_a(f,d) + L_b(f,d) \]
(17)
\[= \left(\frac{2\pi df}{c_L} \right)^2 \frac{1}{G_T G_R} \csc^2 \left(\frac{2\pi h_T h_R f}{c_L d} \right) \prod_{i,g} e^{\kappa^{(i,g)}(f)d}. \]

Remark 1 (Effectiveness of the proposed channel model). In (17), it can be shown that \(\kappa^{(i,g)} \geq 0 \) \forall i,g. This means
the proposed channel model always has a higher path loss than the conventional channel model with no MAA, and thus can represent the practical scenario as a performance benchmark.

Remark 2 (Environment-aware channel model). The proposed channel model depends on not only the distance between two cores C_T and C_R but also the absorption of gas molecules, the temperature and the ambient pressure applied on the chip. In fact, from (10) - (16), the individual absorption coefficient for the isotopologue i of gas g (i.e. $\kappa(i,g)(f)$) is shown to be dependent but not monotonically varied over the frequency.

C. Channel capacity of WiNoCs

We analyze the channel capacity of the wireless channel of WiNoCs with respect to the proposed channel model where the following observations could be made:

Lemma 1. The channel capacity in bits/s of a nanocommunication system between two on-chip antennas is obtained by

$$C(P_T, d) = \sum_{k=1}^{K} \Delta f \log_2 \left[\frac{1 + P_T G_T R \sin^2 \left(\frac{2\pi h_T h_R f_k}{\Delta f} \right)}{\zeta_B} \Delta f \right] \frac{1}{(T_S + T_0) \prod_{i,g} e^{\kappa(i,g)(f_k)d} - T_0} \right] ,$$

where K is the number of sub-bands in the total channel bandwidth of B [Hz], $\Delta f = B/K$ [Hz] is the width of each sub-band and f_k [Hz] is the center frequency of the k-th sub-band.

Proof: As the signal-to-noise ratio (SNR) is required for evaluating the achievable capacity of a communications system, we first derive the total noise power of the nanocommunications between two mm-Wave antennas. At frequency f [Hz], the total noise temperature at C_R located at d [m] from C_T (i.e. $T_{tot}(f,d)$ [K]) consists of the system electronic noise temperature (i.e. T_0 [K]), the molecular absorption noise temperature (i.e. $T_M(f,d)$ [K]) and other noise source temperature (i.e. T' [K]), i.e.

$$T_{tot}(f,d) = T_S + T_M(f,d) + T'.$$

Assuming that $T_S + T_M(f,d) \gg T'$ for all f, we have

$$T_{tot}(f,d) \approx T_S + T_M(f,d). \quad \tag{20}$$

Here, $T_M(f,d)$ is caused by the molecules within transmission medium, and thus can be expressed via the transmittance of the medium as

$$T_M(f,d) = T_0(1 - \tau(f,d)) = T_0 \left(1 - \prod_{i,g} e^{-\kappa(i,g)(f)d} \right). \quad \tag{21}$$

Substituting (21) into (20), we obtain

$$T_{tot}(f,d) \approx T_S + T_0 \left(1 - \prod_{i,g} e^{-\kappa(i,g)(f)d} \right). \quad \tag{22}$$

The total noise power at C_R given transmission bandwidth B is therefore given by

$$P_N(d) = \zeta_B \int_B T_{tot}(f,d)df. \quad \tag{23}$$

Note that the wireless channel for on-chip communication is highly frequency-selective and the molecular absorption noise is non-white. Therefore, we can divide the total bandwidth into K narrow sub-bands to evaluate the capacity, in bits/s, as follows:

$$C(P_T, d) = \sum_{k=1}^{K} \Delta f \log_2 \left[\frac{1 + P_T h_T h_R}{\zeta_B L(f_k,d)T_{tot}(f_k,d)\Delta f} \right] \frac{1}{(T_S + T_0) \prod_{i,g} e^{\kappa(i,g)(f_k)d} - T_0} \right] ,$$

where Δf is the width of sub-band and f_k is the center frequency of the k-th sub-band. Substituting (17) and (22) into (24), we obtain (18) and thus proving the above lemma. ■

Corollary 1. When $h_T \ll d$, $h_R \ll d$ and $d \to 0$ and $G_T = G_R = 1$, the channel capacity of a nanocommunication system can be given by

$$C(P_T, d) \approx \sum_{k=1}^{K} \Delta f \log_2 \left[\frac{1 + P_T h_T^2 h_R^2}{\zeta_B d^2 \Delta f} \right] \frac{1}{(T_S + T_0) \prod_{i,g} e^{\kappa(i,g)(f_k)d} - T_0} \right] ,$$

Proof: As $h_T \ll d$, $h_R \ll d$ and $d \to 0$, applying Maclaurin serie [22, eq. (0.318.2)], it can be approximated that

$$\sin^2 \left(\frac{2\pi h_T h_R f_k}{\zeta_L d} \right) \approx \left(\frac{2\pi h_T h_R f_k}{\zeta_L d} \right)^2 , \quad \tag{26}$$

$$\prod_{i,g} e^{\kappa(i,g)(f_k)d} \approx 1 + \sum_{i,g} \kappa(i,g)(f_k)d = 1 + \kappa(f_k)d. \quad \tag{27}$$

Substituting (26) and (27) into (18) with the assumption of $G_T = G_R = 1$, the corollary is proved. ■

It can be deduced from the above channel model that, the total path loss of electromagnetic signal transmission from between a transmitting and receiving pair has both DPL and MAA components which drastically reduce the performance and reliability of WiNoCs as will be shown latter in Section VI. Consequently, it is crucial to explore alternative communication fabric that is able transmit wireless signals with minimum losses.

VI. SIMULATION RESULTS

To understand the effect of the wireless channel on the total reliability of WiNoCs, the performance evaluation of the mm-wave wireless channel is carried out by investigating the channel model proposed in Section IV. We compare with conventional channel model where signals are transmitted over
pure air with no MAA (e.g. two-ray channel model in [20]).

The simulation is implemented in MATLAB and the parameters of various gas compositions are obtained from the HITRAN database [18]. The impacts of the transmission medium and various channel environment parameters on the performance of mm-Wave WiNoC in terms of path loss and channel capacity are evaluated with respect to different channel modeling approaches. First, we investigate the impacts of antenna transmission frequency on the wireless channel model. Fig. 4 plots the variation of the total path loss (i.e. L) of the two considered channel models with transmission frequency at C_T. Two cores C_T and C_R (i.e. d_C) are implemented on a chip with a die size of 20mm2 and the height (i.e. h) of 1mm. The distance between C_T and C_R (i.e. d) is set to be 0.1mm, satisfying $d < d_C \sqrt{2}$. Each core deploys a zigzag antennas having an elevated height of 0.02mm (i.e. $h_T = h_R = 0.02mm$). The transmission frequency of the antennas (i.e. f) is assumed to vary in the range from 55GHz to 65GHz. The system electronic noise temperature (i.e. T_S) is 296 K and the ambient pressure applied on the chip (i.e. p) is 1atm.

It can be observed in Fig. 4 that the practical channel model for WiNoCs results in a higher total path loss compared to the conventional channel model. Also, the total path loss is shown to not monotonically increase at the GHz frequency band due to the fact that the MAA is caused by isotopologues of gases having various absorption coefficients at various frequencies. For example, the MAA causes a very high path loss at about 61.6GHz. These observations confirm the statements in Remarks 1 and 2 regarding the effectiveness of the proposed channel model with environment-aware property.

Taking the ambient pressure of WiNoCs into consideration, Fig. 5 plots the total path loss of various channel models versus the ambient pressure (i.e. p in kPa3) applied on the chip package. It can be seen in Fig. 5 that the total path loss in the conventional channel model is independent of the ambient pressure. However, the total path loss in the proposed channel model for practical WiNoC is shown to exponentially increase as the ambient pressure increases, which confirms the claim of the exponentially increased total path loss over the ambient pressure in Remark 2. Considering the impacts of distance between two cores on the performance of WiNoC, in Fig. 6, the total path loss of various channel models is plotted. We consider the transmission distance between C_T and C_R (i.e. d) with respect to two values of frequency $f = 60$GHz and $f = 64$GHz. The distance d is assumed to vary in the range [10 : 100]µm and the other simulation parameters are similarly set as in Fig. 4. It can be observed that the total path loss in both the proposed and the conventional channel models increases as the distance increases, which could be straightforwardly verified from the path loss expression in (17). However, there is only a slightly increase of the path loss in the conventional model at the GHz frequency band, while such increase is shown to be significant with a much higher path loss in the proposed channel model, which is in fact caused by the consideration of the MAA to reflect the practical WiNoC.

![Fig. 4. Total path loss versus frequency.](image)

![Fig. 5. Total path loss versus ambient pressure at different frequencies.](image)

![Fig. 6. Total path loss versus distance between mm-Wave antennas at different frequencies.](image)

![Fig. 7. Channel capacity versus distance between two antennas.](image)

2In our model, the parameterizable medium compositions consist of water vapour (which could also an effect of emerging liquid cooling technology), carbon dioxide, oxygen, nitrogen, ozone, molecular hydrogen, nitrous oxide, methane, dioxyn, nitrogen oxide, sulfur dioxide, acetylene, ethane, ethylene, methanol, hydrogen cyanide, chloroethane, hydroxyl radical, hydrogen chloride, chlorine monoxide, carbonyl sulfide, formaldehyde, hypochlorous acid, hydrogen peroxide, phosphine, carbonyl fluoride, sulfur hexafluoride, hydrogen sulfide, formal acid, hydroperoxyl radical, chlorine nitrate, nitrosium ion, hypobromous acid, bromomethane, acetonitrile, carbon tetrafluoride, diacetylene, cyanoacetylene, carbon monosulfide, sulfur trioxide.

3Note that 1atm = 101.325kPa
and the conventional models are considered for comparison and the parameters are set as in Fig. 6. The antennas are assumed to operate at frequency $f = 60\text{GHz}$. As shown in Fig. 7, the channel capacity in the proposed channel model for the practical WiNoCs is lower than that in the conventional channel model, even when the distance between two cores is less than 0.01\,mm. This observation can be intuitively verified through the impacts of the transmission distance on the total path loss.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an efficient channel model for WiNoCs, operating in the GHz band, which accounts for the on-chip constraints. It has been shown that MAA has a considerable effect on the reliability of WiNoCs. Specifically, the MAA has been shown to cause a very high path loss at certain frequencies rather than monotonically increasing over the frequencies as in the conventional channel model. Additionally, the total path loss has been shown to exponentially increase as the ambient pressure applied on the chip increases. Moreover, the total path loss increases as the distance between two cores increases which increases the number of erroneous transmissions in WiNoCs. Unlike conventional approach, our experimental evaluation reveals that a practical channel model for the wireless layer of WiNoCs have a lower channel capacity, which reflects the increased BER and reduced reliability of overall system at the GHz band, even when the separation distance between two antennas is very small (less than 0.01\,mm). Future work involves the evaluation of the latency, area and power consumption overhead of novel coding techniques for improving the reliability of WiNoCs.

REFERENCES

