
This version is available at: http://eprints.mdx.ac.uk/16745/

Copyright:

Middlesex University Research Repository makes the University's research available electronically.

Copyright and moral rights to this work are retained by the author and/or other copyright owners unless otherwise stated. The work is supplied on the understanding that any use for commercial gain is strictly forbidden. A copy may be downloaded for personal, non-commercial, research or study without prior permission and without charge.

Works, including theses and research projects, may not be reproduced in any format or medium, or extensive quotations taken from them, or their content changed in any way, without first obtaining permission in writing from the copyright holder(s). They may not be sold or exploited commercially in any format or medium without the prior written permission of the copyright holder(s).

Full bibliographic details must be given when referring to, or quoting from full items including the author's name, the title of the work, publication details where relevant (place, publisher, date), pagination, and for theses or dissertations the awarding institution, the degree type awarded, and the date of the award.

If you believe that any material held in the repository infringes copyright law, please contact the Repository Team at Middlesex University via the following email address:

eprints@mdx.ac.uk

The item will be removed from the repository while any claim is being investigated.

See also repository copyright: re-use policy: http://eprints.mdx.ac.uk/policies.html#copy
There is an increasing interest in the study of fungi that inhabit extreme environments that can provide new biotechnological applications in treating contaminated land. Fungi are versatile biosorbsents as they can tolerate extreme levels of metal concentration, nutrient availability, pH and temperature (Gadd, 2009).

In this work, heavy metals contaminated soil was collected from Geevor Tin Mine in Penzance, Cornwall. Arsenic and antimony were found in high concentration of 18970 ± 227.0 mg/kg and 196.57 ± 1.91 mg/kg respectively in an extremely acidic soil pH of 1.13. Acidomyces acidophilus strain shows promise in tolerating elevated levels of As (>20,000 mg/L) and Sb (>300 mg/L).

Aims/Objectives
- To provide better understanding of fungi bioremediation ability and mechanisms involve in removing arsenic.
- Isolation of arsenic resistance fungi strain from tin-mining soils using arsenic containing medium.
- Challenge the strain with the presence of antimony to establish any co-existing resistance towards arsenic and antimony.
- Determining the effectiveness of the resistant strains to remove As (with the possibility of Sb).

Methods
- **Soil sample collection**
 Soil samples were obtained from Geevor Tin Mine in Penzance, Cornwall (located at the far end of Southwest England).

- **Investigate the soil samples heavy metal content**
 Using three-step sequential extraction and acd digestion method (Radiar & Purchase, 2012).

- **Fungi strain identification**
 Microscopic technique, DNA extraction using CTAB method, amplification and gene sequencing of ITS regions (dDNA) using PCR.

- **Investigate the interaction between arsenic and antimony**
 Fungi exposed to single treatments or combinations of As and Sb using culture plates and broth.

- **Determination of fungi minimum inhibitory concentration (MIC)**
 The fungal growth were observed on minimal medium (MM) and challenged with arsenic at different concentrations to determine the MIC values.

- **Determination of metal removal efficiency**
 Metal removal efficiency (%) was determined by measuring the metal concentration remained in the growth medium using ICP-OES.

- **Identification of fungal strain**
 Microscopic identification
 PCR and DNA sequencing
 Based on the ITS and LSU regions of the rDNA, a BLAST similarity search was used to find similar sequences in the Genbank database. The ITS rDNA sequences are nearly identical to those found in Acidomyces acidophilus (Sigler & J.W. Carmich) (99.6%, AJ44237).

Results & Discussion

Soil analysis

Site 3 sample contains 18950 mg/kg of As and a three step sequential extraction was performed using this sample.

F1 fraction indicates the As and Sb bioavailability in soil samples. Fraction F2 indicates that metals are organically bound to their matrix (not readily available), while F3 is the residual fraction (which metals are not available at all for uptake).

Adsorption isotherms

Langmuir isotherm model

\[q_e = \frac{Q \cdot b \cdot C_e}{1 + b \cdot C_e} \]

- The Langmuir model fits better than the Freundlich model on the adsorption equilibrium data in the examined concentration range of As²⁺.
- The data from current study fitted the Langmuir isotherm model well, with regression coefficient (R²) of 0.989 (Figure 7B). Small b values (0.027) imply strong binding of arsenic ions to Acidomyces acidophilus. The predicted maximum capacity of fungal strain uptake of As²⁺ was 195.3 mg/g dry biomass.

Conclusion

- Acidomyces acidophilus strain isolated from highly contaminated tin mining soil in Cornwall can tolerate up to 22500 mg/L of As²⁺.
- The presence of Sb reduces the uptake of As²⁺ by Acidomyces acidophilus.
- Based on the Langmuir isotherm model, it predicted Acidomyces acidophilus has maximum uptake of As²⁺ capacity of 195.3 mg/g.

Future work

- Identify the cause of reduction in As²⁺ ions uptake by Acidomyces acidophilus when Sb is added during the biosorption process.
- Examine the mechanisms of As uptake by fungal strain using MALDI–TOF where protein expression before and after the presence of As could provide a better understanding of As removal by fungal strain.
- Further study of other techniques involving As removal by Acidomyces acidophilus such as extracellular precipitation, biovolatilization, etc.

References
