
Presentation

This version is available at: http://eprints.mdx.ac.uk/16732/

Copyright:

Middlesex University Research Repository makes the University's research available electronically. Copyright and moral rights to this work are retained by the author and/or other copyright owners unless otherwise stated. The work is supplied on the understanding that any use for commercial gain is strictly forbidden. A copy may be downloaded for personal, non-commercial, research or study without prior permission and without charge.

Works, including theses and research projects, may not be reproduced in any format or medium, or extensive quotations taken from them, or their content changed in any way, without first obtaining permission in writing from the copyright holder(s). They may not be sold or exploited commercially in any format or medium without the prior written permission of the copyright holder(s).

Full bibliographic details must be given when referring to, or quoting from full items including the author's name, the title of the work, publication details where relevant (place, publisher, date), pagination, and for theses or dissertations the awarding institution, the degree type awarded, and the date of the award.

If you believe that any material held in the repository infringes copyright law, please contact the Repository Team at Middlesex University via the following email address:

eprints@mdx.ac.uk

The item will be removed from the repository while any claim is being investigated.

See also repository copyright: re-use policy: http://eprints.mdx.ac.uk/policies.html#copy
The Mechanisms of Arsenic bioremediation from water by the Green Microalgae *Chlorella vulgaris*

Leonardo Pantoja, Diane Purchase, Huw Jones, Jörg Feldmann and Hemda Garellick
Toxicity of arsenic to *C. vulgaris*
- ASTM E1218 and flow cytometry

Focused sonication for extraction for As-phytochelatin complexes

Formation of As-GS/PC complexes as detoxification mechanism
- Exposure to As(III) (Sodium arsenite)
- Exposure to DMA(V) (Dimethylarsinic acid)
- Exposure to As(V) (Sodium arsenate)

Total As-GS/PC formation

Transport of As-GS/PC to vacuoles

Conclusions
The Elements According to Relative Abundance

A Periodic Chart by Prof. Wm. F. Sheehan, University of Santa Clara, CA 95053

Colors suggest relative electronegativity

© 1970 Wm. F. Sheehan
All Rights Reserved
Reprinted from 1978 © Calendar.
Arsenic toxicity (similarities)
Arsenic toxicity (similarities)

![Graph showing the pH of phosphate and arsenate forms](image)

- H_3PO_4
- H_3AsO_4
- H_2PO_4^-
- H_2AsO_4^-
- HPO_4^{2-}
- HAsO_4^{2-}
- PO_4^{3-}
- AsO_4^{3-}
Arsenic toxicity (similarities)
TOXICITY OF ARSENIC TO *C. VULGARIS*

- Toxicity of As(III) (72 h @ 0.3mg L\(^{-1}\) phosphate)
 \[IC_{50} = 64.23 \text{ mg L}^{-1} \]
- Toxicity of As(V) (72 h @ 0.3mg L\(^{-1}\) phosphate)
 \[IC_{50} = 1.07 \text{ mg L}^{-1} \]

Chlorophyll as surrogate for cell health

Toxicity of As(III) (72 h @ 0.3mg L\(^{-1}\) phosphate)

- **CMFDA**
 - Non protein SH reporter dye
 - D=0.03

- **BCECF**
 - pH reporter dye
 - D=0.06

Toxicity of As(V) (72 h @ 0.3mg L\(^{-1}\) phosphate)

- **CMFDA**
 - Non protein SH reporter dye
 - D=0.56

- **BCECF**
 - pH reporter dye
 - D=0.32

As(III) and As(V) Comparison

- **H2DCHF**
 - H-DA radical reporter dye
 - D=0.02

- **HE**
 - O\(_2\) superoxide radical reporter dye
 - D=0.03

Kolmogorov-Smirnov statistics

- n=20,000 cells, Strong D>0.3, Moderate 0.2< D <= 0.3, Weak 0.15< D <=0.20, Negligible D <= 0.15
ENHANCED DETERMINATION OF ARSENIC–PHYTOCHELATIN COMPLEXES IN *C. VULGARIS* USING FOCUSED SONICATION EXTRACTION*

1% formic acid, 30s in ice bath (4°C) @13mg L⁻¹ phosphate

<table>
<thead>
<tr>
<th>Sample</th>
<th>µg As g⁻¹</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total extraction C. vulgaris</td>
<td>83.2</td>
<td>SE = 2.04, n= 6</td>
</tr>
<tr>
<td>Sonication C. vulgaris</td>
<td>59.2</td>
<td>SE = 1.14, n = 6</td>
</tr>
</tbody>
</table>

% Recovery

<table>
<thead>
<tr>
<th>Quality control</th>
<th>µg As L⁻¹</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total extraction Kelp</td>
<td>23.5</td>
<td>SE = 0.60, n = 9</td>
</tr>
<tr>
<td>Sonication Kelp</td>
<td>22.2</td>
<td>SE = 0.28, n = 11</td>
</tr>
<tr>
<td>SRM 2669</td>
<td>48.1</td>
<td>%RSD = 2.16</td>
</tr>
<tr>
<td>Certified value</td>
<td>50.7</td>
<td>± 6.3 (95% CI)</td>
</tr>
</tbody>
</table>

SE= Standard error, n = Number of samples, % RSD = Relative standard deviation

EXPOSURE TO As(III)*

Cells exposed to 50mg L⁻¹ for 48h

Unbound peptides

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Formula</th>
<th>Monoisotopic mass (M+H⁺ or M+2H⁺)</th>
<th>Experimental mass</th>
<th>Difference ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSH/PC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSH</td>
<td>C₁₀H₁₇N₃O₆S</td>
<td>308.0916</td>
<td>308.0912</td>
<td>-1.34</td>
</tr>
<tr>
<td>GSSG</td>
<td>C₂₀H₃₂N₈O₁₂S₂</td>
<td>613.1598</td>
<td>613.1598</td>
<td>0</td>
</tr>
<tr>
<td>Reduced PC₂</td>
<td>C₁₈H₂₉N₅O₁₀S₂</td>
<td>540.1434</td>
<td>540.1433</td>
<td>-0.16</td>
</tr>
<tr>
<td>Oxidised PC₂</td>
<td>C₁₈H₂₇N₅O₁₀S₂</td>
<td>538.1278</td>
<td>538.1289</td>
<td>2.04</td>
</tr>
<tr>
<td>Reduced PC₃</td>
<td>C₂₆H₴₁N₁₇O₁₄S₃</td>
<td>772.1952</td>
<td>772.1952</td>
<td>-0.01</td>
</tr>
<tr>
<td>Oxidised PC₃</td>
<td>C₂₆H₴₉N₁₇O₁₄S₃</td>
<td>770.1795</td>
<td>770.1795</td>
<td>0</td>
</tr>
<tr>
<td>Reduced PC₄</td>
<td>C₃₄H₄₅N₉O₁₈S₄</td>
<td>1004.247</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala GSH/PC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ-(Glu-Cys)-Ala</td>
<td>C₁₁H₁₉N₂O₅S</td>
<td>322.1073</td>
<td>322.1072</td>
<td>-0.21</td>
</tr>
<tr>
<td>γ-(Glu-Cys)₂-Ala</td>
<td>C₁₉H₃₁N₈O₁₀S₂</td>
<td>554.1591</td>
<td>554.1578</td>
<td>-2.2</td>
</tr>
<tr>
<td>desGly GSH/PC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ-(Glu-Cys)</td>
<td>C₈H₁₄N₂O₃S</td>
<td>251.0702</td>
<td>251.0706</td>
<td>1.55</td>
</tr>
<tr>
<td>γ-(Glu-Cys)₂</td>
<td>C₁₈H₂₆N₄O₅S₂</td>
<td>483.1219</td>
<td>483.1217</td>
<td>-0.58</td>
</tr>
<tr>
<td>γ-(Glu-Cys)₃</td>
<td>C₂₄H₳₈N₆O₁₃S₃</td>
<td>715.1737</td>
<td>715.1747</td>
<td>1.41</td>
</tr>
</tbody>
</table>

Arsenic bound peptides

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Formula</th>
<th>Monoisotopic mass (M+H⁺ or M+2H⁺)</th>
<th>Experimental mass</th>
<th>Difference ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSH/PC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>As(III)-PC₂</td>
<td>C₁₈H₂₈N₉O₁₁S₂As</td>
<td>630.0443</td>
<td>630.0437</td>
<td>-0.88</td>
</tr>
<tr>
<td>As(III)-PC₃</td>
<td>C₂₆H₃₈N₁₄O₁₄S₃As</td>
<td>844.0933</td>
<td>844.0931</td>
<td>-0.19</td>
</tr>
<tr>
<td>GS-As(III)-PC₂</td>
<td>C₂₉H₄₃N₆O₁₈S₃As</td>
<td>460.0666</td>
<td>460.0663</td>
<td>-0.06</td>
</tr>
<tr>
<td>As(III)-(PC₃)₂</td>
<td>C₃₉H₅₄N₁₀O₂₅S₄As</td>
<td>576.0925</td>
<td>576.0923</td>
<td>-0.37</td>
</tr>
<tr>
<td>As(III)-PC₄</td>
<td>C₃₄H₅₀N₉O₁₈S₄As</td>
<td>1076.1451</td>
<td>1076.1455</td>
<td>0.37</td>
</tr>
<tr>
<td>MMA(III)-PC₂</td>
<td>C₁₈H₃₀N₅O₁₀S₂As</td>
<td>628.0728</td>
<td>628.0729</td>
<td>0.12</td>
</tr>
<tr>
<td>Ala GSH/PC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>As(III)-γ-(Glu-Cys)₃-Ala</td>
<td>C₂₉H₄₀N₉O₁₄S₂As</td>
<td>858.109</td>
<td>858.1082</td>
<td>-0.87</td>
</tr>
<tr>
<td>GS-As(III)-γ-(Glu-Cys)₂-Ala</td>
<td>C₂₉H₃₈N₈O₁₆S₂As</td>
<td>467.0744</td>
<td>467.0744</td>
<td>0.09</td>
</tr>
<tr>
<td>As(III)-γ-(Glu-Cys)₂-Ala</td>
<td>C₃₉H₅₇N₁₀O₂₀S₃As</td>
<td>583.1003</td>
<td>583.101</td>
<td>1.19</td>
</tr>
<tr>
<td>MMA(III)-γ-(Glu-Cys)₂-Ala</td>
<td>C₂₀H₃₂N₆O₁₀S₂As</td>
<td>642.0885</td>
<td>642.0889</td>
<td>0.66</td>
</tr>
</tbody>
</table>

Newly reported peptides

Glutathione/PC homologues (terminal amino acid Gly substituted by Ala, Ser, Gln, Glu or is absent)

Newly reported peptides

EXPOSURE TO DMA*

Cells exposed to 50mg L^{-1} for 48h

DMAS^{V}-GS has only been reported once in Brassica Oleracea plants:

- Cabbage, broccoli, cauliflower, kale, Brussels sprouts, collard greens, savoy, among other

1 GSH (308), 2 DMAS^{V}-GS (444), 3 Reduced PC_{2} (540) and 4 Oxidised PC_{2} (538), As and S signals from HR-ICP-MS

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Formula (M)</th>
<th>Monoisotopic mass (M+H^+)</th>
<th>Experimental mass</th>
<th>Difference ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSH</td>
<td>C_{10}H_{17}N_{3}O_{6}S</td>
<td>308.0916</td>
<td>308.0918</td>
<td>0.65</td>
</tr>
<tr>
<td>Red PC_{2}</td>
<td>C_{18}H_{29}N_{5}O_{10}S_{2}</td>
<td>540.1434</td>
<td>540.1433</td>
<td>-0.16</td>
</tr>
<tr>
<td>Ox PC_{2}</td>
<td>C_{18}H_{28}N_{5}O_{10}S_{2}</td>
<td>538.1278</td>
<td>538.1288</td>
<td>1.86</td>
</tr>
<tr>
<td>DMAS^{V}-GS</td>
<td>C_{12}H_{23}N_{3}O_{6}S_{2}As</td>
<td>444.0244</td>
<td>444.0247</td>
<td>0.56</td>
</tr>
</tbody>
</table>

@13mg L^{-1} phosphate

EXPOSURE TO As(V)*

Cells exposed to 50mg L⁻¹ for 48h

@13mg L⁻¹ phosphate

At this level of phosphate cells are not under stress

Anal. Methods, 2014, 6, 791-797
EXPOSURE TO As(III)*

@13mg L⁻¹ phosphate
TOTAL As-GS/PC FORMATION

@13mg L\(^{-1}\) phosphate

- Coloured bars - total amount of arsenic
- White bars - amount of As-GS/PC (percentage of total arsenic)

Vertical bars denote + 1 standard error, n = 3
Toxicity (72 h) to As(III) (50 mg L\(^{-1}\)) @13mg L\(^{-1}\) phosphate

Test the presence of ABCC1 and ABCC2 inhibitors:

- MK571 (25 \(\mu\)M)
- Probenecid (Prob, 500 \(\mu\)M)
- Sodium taurocholate (Tau, 50 \(\mu\)M).

ABC = ATP-binding cassette transporter
MRP = Multidrug resistance-associated protein

* (P < 0.05) with respect to control
+ (P < 0.05) with respect to absence/presence of arsenic
Vertical bars + 1 standard error
Control n=6, experiments n = 3
TRANSPORT OF As-GS/PC TO VACUOLES

Cells exposed to 150 mg L\(^{-1}\) of As(III) for 24 h

Without inhibitor
- ABCC transport
- No transport

With inhibitor

CMFDA substrate for ABCC transport
- Probenecid
- MK571

Treatment time 60 min, n=20,000 cells

Graphs and Data
- Control - Probenecid
 - \(x = 52.9, \ SE = 3.2, n = 12\)

- Control - MK571
 - \(x = 59.2, \ SE = 2.9, n = 12\)

- Probenecid
 - \(x = 52.9, \ SE = 3.2, n = 12\)

- MK571
 - \(x = 59.2, \ SE = 2.9, n = 12\)

Statistics
- \(x = 25.9, \ SE = 8.2, n = 10\)
 - \(* p=0.005\)

Treatment
- \(D=0.08\)
- \(D=0.28\)

Legend
- Strong \(D>0.3\), Moderate \(0.2 < D <= 0.3\), Weak \(0.15 < D <=0.20\), Negligible \(D <= 0.15\)

Notes
- Cells exposed to 150 mg L\(^{-1}\) of As(III) for 24 h
- CMFDA substrate for ABCC transport
- Probenecid
- MK571

Additional Information
- Treatment time 60 min, n=20,000 cells
CONCLUSIONS

• As(V) is more toxic than As(III) to *C. vulgaris* cells at the same concentration of phosphate
• As(III) triggers the formation of **As-GS/PC** molecules
• As(V) does not trigger the formation of **As-GS/PC** molecules when cells are not under stress
• DMA triggers the formation of **DMAS^v-GS** but it is unlikely that this is part of a detoxification mechanism
• ABCC1 and ABCC2 are involved in **As-GS/PC** transport to acidic vacuoles in *C. vulgaris*
Thank you for listening.

Any questions?
U1-3 Unknowns

P4 GS-As(III)-PC$_2$/GS-As(III)-γ-(Glu-Cys)$_2$,

P5 As(III)-γ-(Glu-Cys)$_2$

P6 GS-As(III)-PC$_2$

P7 GS-As(III)-γ-(Glu-Cys)$_2$-Ala

P8 As(III)-PC$_3$/MMA(III)-PC$_2$

P9 MMA(III)-PC$_2$

P10 As(III)-PC$_3$/As(III)-(PC$_2$)$_2$

P11 As(III)-(PC$_2$)$_2$/As(III)-γ-(Glu-Cys)$_3$-Ala/As(III)-γ-(Glu-Cys)$_2$-Ala/MMA(III)-γ-(Glu-Cys)$_2$-Ala,

P12 As(III)-PC$_4$

P13 As(III)-PC$_4$