
This version is available at: http://eprints.mdx.ac.uk/16731/

Copyright:

Middlesex University Research Repository makes the University's research available electronically.

Copyright and moral rights to this work are retained by the author and/or other copyright owners unless otherwise stated. The work is supplied on the understanding that any use for commercial gain is strictly forbidden. A copy may be downloaded for personal, non-commercial, research or study without prior permission and without charge.

Works, including theses and research projects, may not be reproduced in any format or medium, or extensive quotations taken from them, or their content changed in any way, without first obtaining permission in writing from the copyright holder(s). They may not be sold or exploited commercially in any format or medium without the prior written permission of the copyright holder(s).

Full bibliographic details must be given when referring to, or quoting from full items including the author’s name, the title of the work, publication details where relevant (place, publisher, date), pagination, and for theses or dissertations the awarding institution, the degree type awarded, and the date of the award.

If you believe that any material held in the repository infringes copyright law, please contact the Repository Team at Middlesex University via the following email address:

eprints@mdx.ac.uk

The item will be removed from the repository while any claim is being investigated.

See also repository copyright: re-use policy: http://eprints.mdx.ac.uk/policies.html#copy
RISK ASSESSMENT AT AN INFORMAL E-WASTE RECYCLING SITE IN LAGOS STATE, NIGERIA

ISIMEKHAI K.A; WATT J; GARELICK H; PURCHASE D

DEPARTMENT OF NATURAL SCIENCES, MIDDLESEX UNIVERSITY, LONDON

INTRODUCTION

E-waste is referred to obsolete, broken electronic devices such as mobile phones, televisions, computer monitors, laptops, printers, scanners, and associated wiring (Luther, 2010). E-waste is generated in large quantities (Tang et al., 2010); the composition of the waste creates a major problem. E-waste contains more than 1000 different substances, many of which are toxic metals and organic pollutants (Robinson, 2009). These include lead and cadmium in circuit boards; lead oxide and cadmium in monitor cathode ray tubes (CRTs); mercury in switches and flat screen monitors; cadmium in computer batteries; polychlorinated biphenyls (PCBs) in older capacitors and transformers; and brominated flame retardants on printed circuit boards, plastic casings, cables and polyvinyl chloride (PVC) cable insulation that release highly toxic dioxins and furans when burned to retrieve copper from the wires (BAN, 2002). Also, polybrominated diphenyl ethers (PBDEs) are used as brominated flame retardants in electronic circuit boards (Wang et al., 2005). Activities carried out at the site of interest include dismantling of the different electronic waste, sorting out of various parts and burning of wires and other parts to get valuable metals. The complex composition of e-waste may pose a threat to the environment and human health if they are not disposed correctly.

AIM

Assess the implication of the activities on the soil as well as human exposure at the site.

STUDY AREA

The study site was Alaba rago, Alaba International Market which lies between latitude 06°27.31°N and longitude 03°11.492°E. Alaba International Market was founded in 1978. Located in Ojo Local Government Area of Lagos State, it is the largest market for used and new electronics and electrical equipments in West Africa.

SAMPLING STRATEGY

Soil samples were collected from the topsoil to the depth of 20cm with the aid of a soil auger and a stainless steel trowel to scoop the samples into the sampling/storage bags and labelled. The labelling was done according to sampling points and depth from which the soil was collected. A distance of 10 metres was measured at intervals in directions of the cardinal points. Also, surface soil samples only were collected randomly at the dismantling section of the site.

RESULTS

Elevated levels of various heavy metals were observed.

SPECIATION OF METALS

Speciation fractionates heavy metals in the soil in order of decreasing solubility. F1, the exchangeable fraction is presumably the most mobile and bioavailable. F2 is bound to organic compounds, its mobility is dependent with time, decomposition or oxidation of organic matter. F3, is the residual fraction, the mobility is low and the residual fraction is only available after weathering or soil decomposition (Targao & Puchate, 2001).

The figure above indicates the different fractions of the various metals. It shows cadmium as the most bioavailable. Copper, nickel, chromium are more on the residual fraction.

RISK ASSESSMENT

The human risk associated with the heavy metals contaminants are assessed according to EPA (USEPA1989, 1992, 2011).

The non-carcinogenic risk from individual heavy metals can be expressed as the hazard quotient (HQ) = Cd/RFD where the non-cancer hazard quotient (HQ) is the ratio of exposure to hazardous substances, and RFD is the chronic reference dose of the toxicant (mg/kg/day).

Both exposure routes explored above are of importance for workers at the site. The ingestion important due to hand to mouth activities either smoking a cigarette or eating while at work. The total chronic hazard index is a summation of all individual hazard quotients. HI values > 1 indicates concern as acceptable standards is 1; at which there will be no significant health hazard. The individual metals above all have high hazard quotient, hence an elevated HI. The HI value above indicates high exposure to non-carcinogenic risk to the workers at the e-waste recycling site.

UNCERTAINTY

The model may provide over-estimations or underestimations of the risks involved. However, the results still provide some information to a certain extent which will help alleviate the environmental problem.

CONCLUSION

Informal and uncontrolled e-waste recycling has led to heavy metal contamination and this affects human health via different exposure routes. The activities carried out on the site as the results indicate has high health impacts on both the environment and human health.

RECOMMENDATION

Further studies will be carried out exploring the risk assessment on all other exposure routes as well as uptake with regards the bioavailable metals.