
Published version (with publisher's formatting)

This version is available at: http://eprints.mdx.ac.uk/15757/

Copyright:

Middlesex University Research Repository makes the University's research available electronically.

Copyright and moral rights to this work are retained by the author and/or other copyright owners unless otherwise stated. The work is supplied on the understanding that any use for commercial gain is strictly forbidden. A copy may be downloaded for personal, non-commercial, research or study without prior permission and without charge.

Works, including theses and research projects, may not be reproduced in any format or medium, or extensive quotations taken from them, or their content changed in any way, without first obtaining permission in writing from the copyright holder(s). They may not be sold or exploited commercially in any format or medium without the prior written permission of the copyright holder(s).

Full bibliographic details must be given when referring to, or quoting from full items including the author's name, the title of the work, publication details where relevant (place, publisher, date), pagination, and for theses or dissertations the awarding institution, the degree type awarded, and the date of the award.

If you believe that any material held in the repository infringes copyright law, please contact the Repository Team at Middlesex University via the following email address:
eprints@mdx.ac.uk

The item will be removed from the repository while any claim is being investigated.

See also repository copyright: re-use policy: http://eprints.mdx.ac.uk/policies.html#copy
Research Article

Physiological requirements for carbonate precipitation during biofilm development of Bacillus subtilis etfA mutant

Massimiliano Marvasi¹, Pieter T. Visscher², Brunella Perito³, Giorgio Mastromei³ & Lilliam Casillas-Martínez¹

¹Biology Department, University of Puerto Rico-Humacao, Humacao, PR, USA; ²Department of Marine Sciences, Center for Integrative Geosciences, University of Connecticut, Groton, CT, USA; and ³Dipartimento di Biologia Evoluzionistica, Università degli Studi di Firenze, Florence, Italy

Correspondence: Lilliam Casillas-Martínez, Biology Department, University of Puerto Rico-Humacao, Box CUH 100 Carr. 908, Humacao, PR 00791, USA. Tel.: +1 787 850 0000, ext. 9162; fax: +1 787 850 9439; e-mail: lilliam.casillas@upr.edu

Received 6 May 2009; revised 4 October 2009; accepted 20 October 2009.

DOI:10.1111/j.1574-6941.2009.00805.x

Editor: Julian Marchesi

Keywords
calcite precipitation; etfA; Bacillus subtilis; biofilm; B4 precipitation medium; EPS.

Abstract

Although the implications of calcium carbonate (CaCO₃) precipitation by microorganisms in natural environments are quite relevant, the physiology and genetics of this phenomenon are poorly understood. We have chosen Bacillus subtilis 168 as our model to study which physiological aspects are associated with CaCO₃ (calcite) formation during biofilm development when grown on precipitation medium. A B. subtilis etfA mutant named FBC5 impaired in calcite precipitation was used for comparative studies. Our results demonstrate that inactivation of etfA causes a decrease in the pH of the precipitation medium during biofilm development. Further analysis demonstrated that etfA extrudes an excess of 0.7 mol H⁺ L⁻¹ with respect to B. subtilis 168 strain. Using media buffered at different pH values, we were able to control calcite formation. Because etfA encodes the α-subunit of a putative flavoprotein involved in fatty acid metabolism, we compared the intracellular levels of NADH among strains. Our physiological assay showed that FBC5 accumulated up to 32 times more NADH than the wild-type strain. We propose that the accumulation of NADH causes a deregulation in the generation of the proton motive force (ΔµH⁺) in FBC5 producing the acidification.

Introduction

Mineralization, or mineral precipitation, is a widespread process among organisms. The mediation of mineralization by organisms is classified as either controlled or induced (Lowenstam & Weiner, 1989; Dupraz et al., 2009a). In organisms such as multicellular eukaryotes, unicellular algae such as coccolithophores and diatoms and magnetotactic bacteria, the mineralization is defined as controlled; the mineralization process is controlled through intracellular organic matrices or vesicles and the process is thought to be under specific metabolic and genetic control (Lowenstam & Weiner, 1989; Bazylinski & Moskowitz, 1997; Bäuerlein, 2003, 2004). In contrast, induced mineralization is regulated by physiological activities and carried out in open environments (Lowenstam & Weiner, 1989; Ries et al., 2008; Dupraz et al., 2009b). This phenomenon is wide spread in the Bacterial Kingdom, and metabolic pathways such as photosynthesis, urea hydrolysis and sulfate reduction are all examples of induced mineralization (Chafetz & Buczynski, 1992; Hammes et al., 2003; Dupraz & Visscher, 2005; Visscher & Stolz, 2005; Braissant et al., 2007).

The ecological implications of bacterially induced biomineralization are various and several papers deal with biomineralization (Braissant et al., 2004; Wright & Oren, 2005; Garvie, 2006; Dupraz et al., 2009b). Moreover, the ecological relevance of induced mineralization such as microbial calcium carbonate (CaCO₃) precipitation has been exploited in biotechnology, with applications ranging from bioremediation to control leaching (Gollapudi et al., 1995), plugging-cementation of rocks (Stocks-Fischer et al., 1999), solid-phase capture of inorganic contaminants (Warren et al., 2001) and the consolidation of carbonate materials of monuments (Barabesi et al., 2003; Rodriguez-Navarro et al., 2003). In all these applications, the genetics and physiology of the resident microorganisms are poorly understood. Here, we present a study of the physiology of CaCO₃ precipitation in a widely spread soil organism, Bacillus subtilis, which is an excellent candidate with a completely sequenced genome (Kunst et al., 1997) and advanced characterization of its entire proteome (Wollf et al., 2007).

Bacillus subtilis is able to produce calcite crystals in B4 precipitation medium (Boquet et al., 1973). A gene cluster...
involved in calcite precipitation was described in *B. subtilis* 168 strain (Barabesi et al., 2007). The cluster contains five genes (*lcfA, ystA, ysiB, etfB* and *etfA*), and five mutants carrying each of the five inactivated genes were constructed (FBC1–FBC5). All of these mutants, with the exception of FBC1 (mutated in *lcfA*), were unable to form calcite crystals on B4 solid precipitation medium. The *etfA* gene mutated in the strain named FBC5 was found to be essential for calcite precipitation (Barabesi et al., 2007), and its product resembles an α-subunit of prokaryotic heterodimeric flavoproteins involved in electron transport during fatty acid metabolism. Even though it appears that the *etfA* gene is essential to form calcite crystals in *B. subtilis*, the physiology behind the impairment is unknown. In natural environments, several factors are linked to the absence of 'induced' crystal formation, for example pH variations, binding of calcium to extracellular polymeric substances (EPS) production of different quantities of EPS or production of EPS with different properties (Dupraz & Visscher, 2005; Wright & Oren, 2005; Wright & Wacey, 2005). The main goal of the current investigation was to understand the inability of *B. subtilis* FBC5 to produce crystals and the elucidation of the physiological pathways associated with the impairment.

Materials and methods

Bacterial strains and B4 precipitation medium

The strains used in this study were *B. subtilis* 168 (also called strain 168) (Anagnostopoulos & Spizizen, 1961) and *B. subtilis* 168 mutated in the *etfA* gene named strain FBC5 (Barabesi et al., 2007). The cultures were routinely grown either on B4 solid or liquid precipitation medium (0.4% yeast extract, 0.5% dextrose, 0.25% calcium acetate and 1.4% agar in solid preparations) (Boquet et al., 1973). FBC5 cultures were supplemented with 5 μg mL⁻¹ chloramphenicol to maintain the selective pressure for maintaining the inserted plasmid. Unless otherwise specified, biofilms were grown on plates incubated at 37 °C inside a plastic bag to prevent dehydration.

Determination of growth kinetics, pH development and crystal formation in liquid cultures

Fifty milliliters B4 liquid medium was inoculated with 0.5 mL of strain 168 and FBC5 strains from overnight cultures and were placed in a 250-mL flask on a shaker incubator (120 r.p.m., 37 °C). Growth kinetics were reported by measuring the OD of the cultures until the stationary phase. To monitor crystal development, flasks containing cells at the beginning of the exponential phase (OD₆₀₀nm = 0.3) were incubated at 37 °C without shaking for up to a month. A control without cells was always incubated in parallel. The pH of the cultures was monitored using a pH meter (Hanna N2419). Hanna pH standard buffer solutions at pH 4.01 and 7.01 were used to calibrate the pH meter.

Crystal characterization and analyses

Crystal development in cultures was monitored using a dissecting microscope (Olympus SZX9), an optical microscope (Nikon Eclipse E400) and an environmental scanning electron microscope (ESEM) Quanta-200 FEI (with energy-dispersive spectroscopy). Crystals were collected and analyzed by X-ray diffractometry. To verify the presence of a small carbonate precipitate (50–100 μm), a small sample of biofilm was treated with a drop of 1 N HCl on a glass slide. Gas production indicated the presence of crystals.

EPS extraction and Fourier transform infrared spectroscopy (FT-IR) analyses

EPS of strain 168 and FBC5 were recovered from their respective biofilms after 7 days of incubation on B4 medium according to Braissant et al. (2007). Biofilms were resuspended in sterile-distilled water and incubated in a shaker at 250 r.p.m. for 1 h at room temperature. Suspensions were centrifuged at 8000 g for 20 min at 4 °C. Supernatants were further filtered with a 0.45-μm nitrocellulose filter (Fisher-brand). The EPS in the filtrate was precipitated by adding cold ethanol (4 °C) in a 1 : 1 ratio, followed by an overnight precipitation at 4 °C. The EPS was recovered by centrifugation, placed in dialysis tubing (10 kDa) and dialyzed against deionized water. After dialysis, the EPS was stored at −20 °C or freeze dried. FT-IR studies were carried out on freeze-dried samples using a Perkin-Elmer Spectrum 100 FT-IR spectrometer equipped with a single reflection Diamond/ZnSe Standard Universal ATR Accessory (Perkin-Elmer). Thirty-two scans were acquired for each sample. Experiments were conducted in duplicate.

pH changes during biofilm development

pH changes of *B. subtilis* grown on B4 plates were monitored using two pH indicators (Sigma Co.): bromothymol blue (BB), which transitions from yellow at pH 6.0 to blue at pH 7.6, and phenol red (PR), which exhibits a yellow color at pH 6.4 or below and a red color at pH 8.2 and above. BB and PR stock solutions (20 mg mL⁻¹ in 0.1 N NaOH) were added to B4 medium before autoclaving at a final concentration of 0.0025% (v/v). Plates were inoculated by streaking a 4-cm line on the center of the plate and incubated at 37 °C for 1 week or until crystal formation. Experiments were replicated four times.
Test for CaCO₃ precipitation (in vitro)

To test the precipitation of CaCO₃ in vitro, we used two sets of plates with FBC5: one incubated for 24 h (no crystals) and the other incubated for 7 days. Both plates were placed inside a desiccator with 4 mL of ammonium hydroxide at room temperature for 24 h. As described above, crystal development was monitored using a dissecting microscope and a phase-contrast microscope (Nikon Eclipse E400). Experiments were replicated three times.

Precipitation test on modified B4 solid media at different pH

To test whether calcite formation was induced during biofilm development of strain 168 and FBC5 at different pH, the strains were grown on modified B4 plates prepared with final pH values ranging from pH 7.1 to pH 8.8. The pH of each plate was maintained by buffering the medium with Tris 1.2% (w/v) and 2 N HCl.

Urease activity test

Urease medium was prepared according to Washington (1981). Positive urease activity was indicated by an intense red color throughout the medium. Escherichia coli and B. subtilis 168 were used as negative and positive controls, respectively. Experiments were replicated three times.

Intracellular NADH assay

In order to test whether the mutation in etfA alters the total level of NADH, 50 mg of 168 and FBC5 biofilms were collected after 1, 2, 3 and 4 days of growth. The NADH content was assayed using the NAD⁺/NADH quantification kit from Biovision Inc. Cells were washed with phosphate-buffered saline and disrupted by adding 0.2 g of glass beads and two cycles of 5 min in a Bead Beater (Fisher Co.) interrupted by 2-min intervals of cooling on ice. The disruption efficiency was monitored by protein quantification with Bradford Reagent (Sigma Co.). Cell extracts were filtered with a 10-kDa filter in order to remove any enzymes that might consume the released NADH. NADH concentration was expressed as ng NADH µg⁻¹ proteins. The experiment was carried out with two replicas.

Results

Inactivation of the etfA gene does not affect calcite formation of B. subtilis in B4 liquid cultures

The growth kinetics, pH changes and crystal formation of strain 168 and FBC5 were compared on B4 liquid culture. No major differences were observed in the growth kinetics between 168 and FBC5 strains when grown in liquid medium (data not shown). Even though calcite formation in the FBC5 cultures was observed only after 1 month of incubations, crystals were formed by both strains once the pH of the culture exceeded 8.3 (Fig. 1a). X-ray diffraction analyses of crystals produced during growth in liquid media revealed calcite (CaCO₃) (Fig. 1b and c).

Crystals were observed by ESEM and compared with those formed during biofilm development (Fig. 2a). Interestingly, different morphologies were observed (Fig. 2b–e). Calcite crystals in Fig. 2b–d were organized around a central point to form spheroids. The flat circular shapes normally grow on the bottom of the flasks. Frequently, in the mutant aggregates of microspar-sized calcite crystals were present (Fig. 2e).

EPS secreted by B. subtilis strains during biofilm development share similar IR spectra

As calcite formation in B. subtilis was exclusive for strain 168 grown on solid medium, we decided to compare the EPS secreted by both biofilms grown on B4 solid medium. Although the peak distribution was similar to that previously reported for other B. subtilis strains (Omoike & Chorover, 2004), comparisons of the FT-IR spectra of the EPS from both strains tested in this study showed no major differences (Fig. 3).

The two FT-IR revealed an identical homology between the preparations and the presence of bands typical of proteins and carbohydrates. The broad band at 3282 could be assigned to OH stretching of alcohols. The presence of alcohols was confirmed in the band at 1045 (C-OH stretch) typically of cyclic alcohols and in the OH deformation band at 1376. The bands around 2924 were associated with C-H stretching of the sugar backbone, while the band at 1226 could be assigned to the stretching of the ether bonds C-O-C in the glycoside bond.

Two typical bands could be assigned to protein secondary structure: C = O of the amide I at 1637 and the amide II at 1547.

Decrease in pH during biofilm development of FBC5 is responsible for impairment in calcite formation

To investigate whether pH changes during biofilm development are associated with impairment of crystal formation in the etfA mutant (FBC5), both strains were grown on B4 solid medium supplemented with pH indicators. Interestingly, after 1 week of growth, strain FBC5 exhibited acidification in the medium (Fig. 4).
Calcite crystal formation in *B. subtilis* biofilm is a reversible phenomenon

To test whether pH was indeed the main determinant in mineral precipitation, the pH of the medium was changed in order to investigate restoration of crystal formation. Two different experiments were conducted: in the first experiment, FBC5 biofilms were placed under an ammonium hydroxide-saturated headspace to determine whether a pH increase will initiate crystal formation (as a result of dissolution of ammonia into the plates). Crystal formation was restored within 24 h of incubation and coincided with a color transition in the BB plates to alkalinization. The resulting crystal morphology was different compared with *B. subtilis* 168 grown on standard B4 plates (Fig. 5a and b) as observed in liquid cultures (Fig. 2).

In the second experiment, strain FBC5 was streaked on modified B4 medium containing BB and buffered using either 0.6% or 1.2% w/v of Tris, pH = 8.3. Crystal formation on FBC5 was re-established after 1 week of incubation of the
plates containing 1.2% Tris (Fig. 5c and d) and no crystals were formed on the plates with 0.6% Tris. Similarly, changes in BB indicator plates were only evident in the 0.6% plates, but not those supplemented with 1.2% of Tris (data not shown), indicating that in the presence of 1.2% of Tris, FBC5 was unable to acidify the microenvironment of the

Fig. 3. FT-IR spectra of EPS from *Bacillus subtilis* 168 and FBC5 biofilms after 1 week of incubation at 37 °C. Upper spectrum, *B. subtilis* 168; lower spectrum, strain FBC5. FT-IR were conducted in replicas for each strain revealing identical peak patterns among preparations.

Fig. 4. Changes in pH of *Bacillus subtilis* 168 and strains FBC5 grown on B4 solid medium supplemented with BB and PR after 1 week of incubation at 37 °C. Bottom colored bars represent the gradient of color change associated with pH values for the indicators BB and PR (colors in the bars are only indicative). Replicas for each strain were always identical.
biofilm. X-ray diffraction analyses of crystals produced during growth on solid B4 1.2% Tris, pH 8.3, revealed calcite (Fig. 5e and f).

FBC5 mutant extrudes 0.7 mol H⁺ L⁻¹ more than strain 168 on precipitating media

To estimate the differences in proton extrusion among *B. subtilis* strains, we compared their capacity to produce carbonate crystals on well-buffered B4 medium plates (supplemented with 1.2% Tris). The pH of the plates used ranged from 7.1 to 8.8. As depicted in Fig. 6, calcite formation by *B. subtilis* strain 168 started at pH 7.5, while its FBC5 mutant was only able to form crystals when the pH was at 8.2. Consequently, the proton extrusion by strain FBC5, indicated by the double arrow, was responsible for the difference in the pH values required for crystal formation on plates inoculated with strain 168 and FBC5. Using the pH value of 8.2 for FBC5 and pH 7.5 for strain 168 at which precipitation commenced, we determined that $10^{-7.5} - 10^{-8.2} = 2.5 - 1.8$ mol L⁻¹ = 0.7 mol H⁺ L⁻¹ more were extruded by strain FBC5 when compared with strain 168. However, this estimation could not take into account all the various components of the B4 medium. Therefore, it is likely that the FBC5 strain extrudes even more protons than calculated.

Sources for the excess of proton extrusion in FBC5

The excess of proton extrusion observed for strain FBC5 can be due to lack of OH⁻ production or, alternatively, excess of H⁺ production. We tested both possibilities. For the scenario in which OH⁻ is removed, we tested the urease presence of
both strains to check whether a difference in ammonia production in the mutant caused the lower pH as shown in the following equations (Hammes et al., 2003):

\[
\text{CO(NH}_2\text{)}_2 + \text{H}_2\text{O} \rightarrow \text{NH}_2\text{COOH} + \text{NH}_3
\]

(1)

\[
\text{NH}_3 + \text{H}_2\text{O} \rightarrow \text{NH}_4^+ + \text{OH}^-
\]

(2)

Both strains were positive to the urease test. However, a different result was reported when the production of \(\text{H}^+\) was studied.

Increase in the intracellular levels of NADH in the B. subtilis FBC5 mutant during calcite formation

In *B. subtilis*, etfA encodes a putative \(\alpha\)-subunit of a flavoprotein involved in fatty acid metabolism. The function of EftA protein seems to be related to the oxidation–reduction reactions of NAD\(^+\)/NADH (De Mendoza et al., 2002; Fujita et al., 2007; Inui et al., 2008), and by extension, may influence the accumulation of \(\text{H}^+\). Determination of intracellular levels of NADH during biofilm development showed that cells with the \(\text{etfA}\) mutation accumulated more NADH than the strain 168 (Fig. 7). Between the second and the fourth days, the intracellular levels of NADH were about 32 times higher in FBC5 than the strain 168.

Discussion

Previously, Barabesi et al. (2007) identified an operon involved in calcite precipitation. They reported that the last gene of the operon, etfA, which encodes a putative flavoprotein, was found to be essential for the precipitation process on solid medium. In the current study, we have focused on the physiology of the \(\text{etfA}\) mutant in order to understand the lack of calcite crystal formation. In a natural environment, calcium-binding sites (i.e. EPS), \(\text{pH}\), \([\text{Ca}^{2+}]\), \([\text{CO}_3^{2-}]\) as well as the spatial distribution of these ions/molecules are key players in calcite precipitation (Dupraz & Visscher, 2005; Dupraz et al., 2009a). Consequently, we studied whether calcite formation phenomenon was exclusive of solid cultures. Growth comparison between 168 and FBC5 strains in liquid cultures revealed no major differences in the growth kinetics, change in \(\text{pH}\) and calcite formation (Fig. 1). X-ray diffraction analyses of crystals produced during growth in liquid media revealed calcite composition (Fig. 1b and c). Barabesi et al. (2007) monitored the \(\text{pH}\) of cultures of strains 168 and FBC5 for 10 days in B4 liquid medium with calcium acetate replaced by sodium acetate without detecting significant differences among strains. We concluded that the impairment in calcite precipitation was only related to solid medium probably due to the particular spatial microenvironmental conditions in the biofilm. Preliminary analysis of EPS extracted from both biofilms revealed similar FT-IR patterns in strains 168 and FBC5 (Fig. 3). However, major differences were observed in \(\text{pH}\) variations; acidification of plates coincided only during biofilm development by strain FBC5 (Fig. 4). The decrease in the \(\text{pH}\) of FBC5 biofilms was the main process responsible for the lack of calcite crystal formation. The phenomenon was reversible and calcite crystal formation was restored when the biofilm was incubated under alkaline conditions, either under ammonium hydroxide headspace or on plates buffered with 1.2% Tris (\(\text{pH} \geq 8.2\)) (Fig. 5a–d). However, these data suggest that no specific inhibitors of precipitation are produced. Regulation of precipitation by the local \(\text{pH}\) was further confirmed using media buffered at different \(\text{pH}\) values, through which we were able to control the calcite crystal formation in biofilms (Fig. 6). The current findings are similar to those...
reported for CaCO$_3$ precipitation by heterotrophic bacteria (Chaftz & Buczynski, 1992; Rivadeneyra et al., 1999). When provided with sufficiently high [Ca$^{2+}$], heterotrophic bacteria can precipitate CaCO$_3$ if the system is very well buffered, and so without a change in pH, an increase in CO$_2$/HCO$_3^-$ causes an increase in [CO$_3^{2-}$] (Visscher & Stolz, 2005).

When considering organic carbon metabolism only, bacteria capable of aerobic-heterotrophic respiration and fermentation dissolve, rather than precipitate CaCO$_3$ (Visscher & Stolz, 2005). Bacillus subtilis metabolism can be described by either of these two metabolic types. However, microorganisms that display ureolytic activity, as well as B. subtilis, are capable of precipitating calcite crystals (Hammes et al., 2003). Urea hydrolysis is one of the metabolic processes that enhances microbial carbonate precipitation in natural environments such as soil (Hammes et al., 2003), principally through OH$^-$ production [see Eqn. (1) and (2)]. If the FBC5 mutant lacked the capacity to hydrolyze urea, this could account for the lack of CaCO$_3$ precipitation. Curiously, no differences (in terms of color variation of the medium) in urease activity were found between B. subtilis strain 168 and strain FBC5. We propose that the actual mechanism decreasing the pH during FBC5 biofilm development resulted from H$^+$ production exceeding that of OH$^-$. Specifically, the H$^+$ extruded by the mutant was estimated to be 0.7 H$^+$/mol L$^{-1}$ more compared with strain 168 (Fig. 6), and the excess of protons could result from a misregulation in some part of the EtfA pathway. Even though the function of the two EtfA–B proteins in B. subtilis is only putative, in Clostridium acetobutylicum, etfA and etfB coexpression is essential for the butyryl-CoA dehydrogenase activity, and etfA–B genes are involved in the oxidation of NADH in the butyryl-CoA synthesis pathway (Inui et al., 2008). Sequence similarity analysis of EtfA–B proteins of C. acetobutylicum showed 64% and 57% similarity to EtfA–B proteins in B. subtilis, respectively.

If the reduction of β-hydroxybutyryl-CoA takes place in B. subtilis in a similar manner as in C. acetobutylicum, we expected to see an increase in NADH accumulation. Cytoplasmic levels of NADH increased up to 37 times in the strain FBC5 compared with the strain 168 (Fig. 7). We hypothesize that a possible link exists between proton extrusion and the cytosolic accumulation of NADH in B. subtilis. NADH dehydrogenase of B. subtilis, even though its function in transmembrane proton pumping is unknown, plays an important role in catalyzing the translocation of electrons from NADH to menaquinone, thereby generating a proton-motive force, which can be utilized to produce ATP for cellular metabolism (Mitchell, 1961; Sone et al., 2004; Gyan et al., 2006). NADH (and NADPH) oxidation results in the generation of a proton-motive force across the vesicle membrane, which drives the uptake of solutes such as dicarboxylic acids (Bisschop et al., 1975; Bergsma et al., 1981). We propose that the accumulation of NADH in FBC5 could be involved in the generation of a proton gradient through the respiratory electron transport.

Differences in calcite crystal morphologies between 168 and FBC5 strains

As reported previously, crystal morphology depends on the growth conditions and the B. subtilis strain used. Different morphologies were reported by 168 and FBC5 strains grown in liquid culture (Fig. 2b–e), under ammonium headspace on plates (Fig. 5a and b) as well as on the plates buffered at pH 8.3 (Fig. 5c and d). Crystal morphology resulting from microbial precipitation may be affected by differences in EPS properties such as concentration, acidity, functional group composition and pH (Braissant et al., 2003). Even though the FT-IR peak distribution was similar for EPS isolated from strains 168 and FBC5, further quantitative experimentations are required to determine whether differences in protein composition and abundance, acidic groups and sugar composition could influence calcite crystal morphology.

Advantages of an in vitro system

Microorganisms grown in the laboratory under controlled conditions can delineate their ability to alter the geochemistry of the microenvironment (Baskar et al., 2006). However, it is important to evaluate the relevance of mineral precipitation experiments on plates, whose utility until now may have been underestimated. The current study demonstrates that (1) the generation of mutant strains enables a study of the genes and metabolic reactions involved in the precipitation of calcite crystals; (2) it is possible to compare the difference in proton production between two or more carbonate-precipitating strains and assess their effect on calcite mineral precipitation; (3) an appropriate experimental design allows the control of the geochemical fluctuation (i.e. of Ca$^{2+}$, pH, etc.) within the system; and (4) in vitro experiments facilitate study of the mineralogy and morphology of mineral precipitates (Lian et al., 2006; Braissant et al., 2007; Ercole et al., 2007).

Acknowledgements

We acknowledge Dr Ezio Fasoli from the Chemistry Department at the University of Puerto Rico-Humacao for help with the FT-IR. We also thank Dr Cristina Giordano from CEME Centro di Microscopie Elettroniche, Florence, Italy, for the ESEM micrographs. This work was supported by the following grants: NSF MCB 0137336 to P.T.V. and L.C.-M., USDA CREEST 2007 to L.C.-M., NSF EAR 0221796 and 0331929 to P.T.V. Partial support for undergraduate students helping in the project was provided by the MARC.
References

