Analysis of local search landscapes for k-SAT instances

Albrecht, Andreas A., Lane, P.C.R. and Steinhofel, K. (2010) Analysis of local search landscapes for k-SAT instances. Mathematics in Computer Science, 3 (4) . pp. 465-488. ISSN 1661-8270 [Article] (doi:10.1007/s11786-010-0040-7)


Stochastic local search is a successful technique in diverse areas of combinatorial optimisation and is predominantly applied to hard problems. When dealing with individual instances of hard problems, gathering information about specific properties of instances in a pre-processing phase is helpful for an appropriate parameter adjustment of local search-based procedures. In the present paper, we address parameter estimations in the context of landscapes induced by k-SAT instances: at first, we utilise a sampling method devised by Garnier and Kallel in 2002 for approximations of the number of local maxima in landscapes generated by individual k-SAT instances and a simple neighbourhood relation. The objective function is given by the number of satisfied clauses. The procedure provides good approximations of the actual number of local maxima, with a deviation typically around 10%. Secondly, we provide a method for obtaining upper bounds for the average number of local maxima in k-SAT instances. The method allows us to obtain the upper bound TeX for the average number of local maxima, if m is in the region of 2 k · n/k.

Item Type: Article
Research Areas: A. > School of Science and Technology > Computer Science
Item ID: 12392
Depositing User: Andreas Albrecht
Date Deposited: 08 Nov 2013 08:17
Last Modified: 12 Jun 2019 12:30

Actions (login required)

View Item View Item


Activity Overview
6 month trend
6 month trend

Additional statistics are available via IRStats2.