Accelerated particle swarm optimization and support vector machine for business optimization and applications

Yang, Xin-She and Deb, Suash and Fong, Simon (2011) Accelerated particle swarm optimization and support vector machine for business optimization and applications. In: Networked Digital Technologies : Third International Conference, NDT 2011, Macau, China, July 11-13, 2011. Proceedings. Communications in Computer and Information Science (136). Springer, 53-66 . ISBN 978364222184-2

Full text is not in this repository.

Official URL: http://link.springer.com/chapter/10.1007%2F978-3-6...

Abstract

Business optimization is becoming increasingly important because all business activities aim to maximize the profit and performance of products and services, under limited resources and appropriate constraints. Recent developments in support vector machine and metaheuristics show many advantages of these techniques. In particular, particle swarm optimization is now widely used in solving tough optimization problems. In this paper, we use a combination of a recently developed Accelerated PSO and a nonlinear support vector machine to form a framework for solving business optimization problems. We first apply the proposed APSO-SVM to production optimization, and then use it for income prediction and project scheduling. We also carry out some parametric studies and discuss the advantages of the proposed metaheuristic SVM. (from publisher's website)

Item Type:Book Section
Keywords (uncontrolled):Accelerated PSO business optimization metaheuristics PSO support vector machine project scheduling
Research Areas:Science & Technology > Science & Technology
ID Code:9579
Deposited On:21 Nov 2012 12:51
Last Modified:06 Feb 2013 11:34

Repository Staff Only: item control page

Downloads

Downloads per month over past year