Knowledge extraction from microarray datasets using combined multiple models to predict leukemia types.

Stiglic, Gregor and Khan, Nawaz and Kokol, Peter (2008) Knowledge extraction from microarray datasets using combined multiple models to predict leukemia types. In: Data mining: foundations and practice. Studies in Computational Intelligence . Springer, pp. 339-352. ISBN 9783540784876

Full text is not in this repository.

Abstract

Recent advances in microarray technology offer the ability to measure expression levels of thousands of genes simultaneously. Analysis of such data helps us identifying different clinical outcomes that are caused by expression of a few predictive genes. This chapter not only aims to select key predictive features for leukemia expression, but also demonstrates the rules that classify differentially expressed leukemia genes. The feature extraction and classification are carried out with combination of the high accuracy of ensemble based algorithms, and comprehensibility of a single decision tree. These allow deriving exact rules by describing gene expression differences among significantly expressed genes in leukemia. It is evident from our results that it is possible to achieve better accuracy in classifying leukemia without sacrificing the level of comprehensibility.

Item Type:Book Section
Research Areas:Middlesex University Schools and Centres > School of Science and Technology > Computer Science
ID Code:4753
Useful Links:
Deposited On:26 Mar 2010 07:24
Last Modified:30 Oct 2014 14:46

Repository staff only: item control page

Full text downloads (NB count will be zero if no full text documents are attached to the record)

Downloads per month over the past year