Genomic and proteomic sequence recognition using a connectionist inference model.

Bavan, A. S. and Ford, Martyn and Kalatzi, Melina (2000) Genomic and proteomic sequence recognition using a connectionist inference model. Journal of chemical technology and biotechnology, 75 (10). pp. 901-912. ISSN 0264-3413

Full text is not in this repository.

Abstract

In this paper a proposal for implementing a connectionist associative memory model (CAMM) based on a novel approach for recognising sequences is presented. The objective of the CAMM is to satisfy medium-high capacity and the retrieval of an arbitrary number of multiple associative memories that satisfy the stimulus input. The architecture is constructed on-the-fly and is dependent on the information in the training set. The model is composed of two stages; StageI and StageII. StageI is concerned with the development of a state space graph representing the training set and embedding that graph in a connectionist model. During retrieval a graph is produced that represents the candidate solutions; some spurious memories may infiltrate the solution space which is removed in StageII using conventional techniques.

Item Type:Article
Research Areas:Middlesex University Schools and Centres > School of Science and Technology > Computer and Communications Engineering
ID Code:2335
Useful Links:
Deposited On:18 May 2009 15:21
Last Modified:06 Feb 2013 11:40

Repository staff only: item control page

Full text downloads (NB count will be zero if no full text documents are attached to the record)

Downloads per month over the past year