Non-parametric lower bounds
and unbiased estimators

S.Y. Novak
MDX University London, SST, The Burroughs NW44BT, UK
June 2016

Abstract

We introduce the notion of the information index and present a non-parametric generalisation of the Rao–Cramér inequality.

We show that unbiased estimators do not exist if the information index is larger than two.

For a typical non-parametric class \mathcal{P} of distributions neither estimator is asymptotically normal with the optimal rate uniformly over \mathcal{P}.

Key words: non-parametric lower bounds, information index, information function, uniform convergence.

1 Introduction

Typical estimation problem: given a sample X_1, \ldots, X_n of i.i.d. observations from an unknown distribution $P \in \mathcal{P}$, estimate a quantity of interest a_P.

A typical regularity condition:

$$d_H^2(P_\theta;P_{\theta+h}) \sim \|h\|^2 I_\theta / 8 \text{ or } d_\chi^2(P_\theta;P_{\theta+h}) \sim \|h\|^2 I_\theta$$

(1)
as $h \to 0$ for every $\theta \in \Theta$, $\theta + h \in \Theta$, where I_θ is “Fisher’s information”.

If (1) holds and estimator $\hat{\theta}_n$ is unbiased, then

$$\sup_{\theta \in \Theta} I_\theta \mathbb{E}_{\theta} \|\hat{\theta}_n - \theta\|^2 \geq 1/n.$$

(2)

This is the celebrated Fréchet–Rao–Cramér inequality.

If unbiased estimators with a finite second moments exist, then the optimal unbiased estimator is the one that turns a lower bound into equality.

Barankin [1]: a parametric estimation problem where NO unbiased estimator with $\mathbb{E}_{\theta} \|\hat{\theta}_n - \theta\|^2 < \infty$.

We argue: in typical non-parametric situations – NO unbiased estimators with a finite 2nd moment.

2 Information index

We extend the notion of regularity of a parametric family $\mathcal{P} = \{P_\theta, \theta \in \Theta\}$ of distributions.

Definition. Parametric family \mathcal{P} obeys the regularity condition (R_H) if there exists number $\nu > 0$
and function $I_{t,H} > 0$ such that as $h \to 0$,

$$d^2_H (P_t; P_{t+h}) \sim I_{t,H} \|h\|^\nu \quad (t \in \Theta, t+h \in \Theta). \quad (R_H)$$

Similarly we define (R_χ)–regular parametric family.

We call ν the “information” index.

We call $I_{t,H}$ the “information” function.

Information index ν indicates how “rich” or “poor” the class \mathcal{P} is.

Regular parametric family of distributions: $\nu = 2$.

(R_H)–regular parametric families: $\nu < 2$.

Non–parametric classes: (R_H) with $\nu > 2$.

Example 1. Let $P_t = U[0; t], \mathcal{P} = \{P_t, t > 0\}$. Then

$$d^2_H (P_{t+h}; P_t) \sim h/2t \quad (t \geq h \setminus \Delta 0).$$

Family \mathcal{P} is not regular in the traditional sense (cf. (1)). Yet (R_H) holds with

$$\nu = 1, \quad I_{t,H} = 1/2t.$$

Non–uniform lower bound: for any estimator \hat{t}_n

$$\sup_{t>0} t^{-1} \mathbb{E}_{t}^{1/2}(\hat{t}_n - t)^2 \geq 0.8/(n-1.6) \quad (3)$$
as $n \geq 2$, while the *uniform* bound is

$$\sup_t \mathbb{E}_t^{1/2}(\hat{t}_n - t)^2 = \infty.$$

The optimal estimator $t^*_n = \max\{X_1, \ldots, X_n\}(n+1)/n$ is unbiased;

$$\mathbb{E}_t(t^*_n - t)^2 = t^2/n(n+2).$$

Lower bound indicates: the accuracy of estimation is determined by the \textit{information index} and the \textit{information function}.

Any *unbiased estimators* with finite second moment if (R_H) holds with $\nu > 2$?

We say set Θ obeys property (A_ε) if for every $t \in \Theta$ there exists $t' \in \Theta$ such that $\|t' - t\| = \varepsilon$. Property (A) holds if (A_ε) is in force for all small enough $\varepsilon > 0$.

Estimator $\hat{\theta}$ has “regular” bias if for every $t \in \Theta$ there exists $c_t > 0$ such that

$$\|\mathbb{E}_{t+h}\hat{\theta} - \mathbb{E}_t\hat{\theta}\| \sim c_t\|h\| \quad (h \to 0). \quad (4)$$

We write $a_n \gtrsim b_n$ if $a_n \geq b_n(1 + o(1))$ as $n \to \infty$.

Theorem 1 Assume (R_χ) and (A), and suppose that estimator \hat{t}_n has “regular” bias [obeys (4)].
If \(\nu \in (0; 2) \), then
\[
\sup_{t \in \Theta} I_{t, \chi}^2 \mathbb{E}_t \| \hat{t}_n - t \|^2 / c_t^2 \geq n^{-2/\nu} y_{\nu}^{2/\nu} / (e^{y_{\nu}} - 1)
\] (5)
as \(n \to \infty \), where \(y_{\nu} \) is the positive root of the equation \(\nu y = 2(1 - e^{-y}) \).

If \(\nu > 2 \), then \(\mathbb{E}_t \| \hat{t}_n \|^2 = \infty \) (\(\exists t \in \Theta \)).

Thus, if \(\nu \in (0; 2) \), then the accuracy of estimation for regular–bias estimators is \(n^{-1/\nu} \).

Example 2. Parametric family \(\mathcal{P} \) with densities
\[
f_\theta(x) = \varphi(x - \theta)/2 + \varphi(x + \theta)/2,
\]
where \(\varphi \) is the standard normal density; \(a_{P_\theta} = \theta \),
\[
d_H(P_0; P_h) \sim h^2/4.
\]
Thus, \((R_H) \) holds with
\[
\nu = 4, \quad I_{t, H} = 1/16;
\]
the accuracy of estimation cannot be better than \(n^{-1/4} \).

General problem: estimate a quantity of interest \(a_P \).

Corollary 2 If \((R_H) \) or \((R_\chi) \) holds with \(\nu > 2 \) and
\[
\sup_{P \in \mathcal{P}} \mathbb{E}_P \| \hat{a}_n - a_P \|^2 < \infty,
\]
then estimator \(\hat{a}_n \) is **biased**.
3 Continuity moduli

Let a_P be an element of a metric space (X, d). For any $\varepsilon > 0$ we denote by

$$\mathcal{P}_H(P, \varepsilon) = \{Q \in \mathcal{P} : d_H(P; Q) \leq \varepsilon\}$$

the neighborhood of $P \in \mathcal{P}$. We call

$$w_H(P, \varepsilon) = \sup_{Q \in \mathcal{P}_H(P, \varepsilon)} \frac{d(a_P; a_Q)}{2},$$

$$w_H(\varepsilon) = \sup_{P \in \mathcal{P}} w_H(P, \varepsilon)$$

the moduli of continuity of $\{a_P : P \in \mathcal{P}\}$.

Similarly we define $\mathcal{P}_\chi(P, \varepsilon)$, $\mathcal{P}_{TV}(P, \varepsilon)$, $w_\chi(\cdot)$, $w_{TV}(\cdot)$. Continuity moduli describe how the “closeness” of a_Q to a_P reflects the “closeness” of Q to P.

The “richer” class \mathcal{P}, the poorer the accuracy of estimation.

Lemma 3 Assume that for any $c > 0$ there exists $C \in (0; \infty)$ such that $w.(c\varepsilon) \leq Cw.(\varepsilon)$. For any estimator \hat{a}_n and every $P_0 \in \mathcal{P}$,

$$\sup_{P \in \mathcal{P}_H(P_0, \varepsilon)} P(d(\hat{a}_n; a_P) \geq w_H(P_0, \varepsilon)) \geq (1 - \varepsilon^2)^{2n}/4, \quad (6)$$

$$\sup_{P \in \mathcal{P}_\chi(P_0, \varepsilon)} P(d(\hat{a}_n; a_P) \geq w_\chi(P_0, \varepsilon)) \geq \frac{1}{1 + (1 + \varepsilon^2)^{n/2}}. \quad (7)$$

For example, (6) and Chebyshev’s inequality yield

$$\sup_{P \in \mathcal{P}_H(P_0, \varepsilon)} \mathbb{E}_P d(\hat{a}_n; a_P) \geq w_H(P_0, \varepsilon)(1 - \varepsilon^2)^{n}/2. \quad (7)$$
Maximize \(w_H(P, \varepsilon)(1-\varepsilon^2)^n \) in \(\varepsilon \).

If for some \(J_{H,P} > 0 \)

\[
 w_H(P, \varepsilon) \geq J_{H,P} \varepsilon^{2r} \quad (\exists P \in \mathcal{P}) \tag{8}
\]

then the rate of estimation cannot be better than \(n^{-r} \).

If \((R_H)\) holds for a parametric subfamily of \(\mathcal{P} \), then

\[
 2w_H(P_t, \varepsilon) \sim (\varepsilon^2/I_{t,H})^{1/\nu} \tag{9}
\]

If \((R_\chi)\) holds, then

\[
 2w_\chi(P_t, \varepsilon) \sim (\varepsilon^2/I_{t,\chi})^{1/\nu}.
\]

Thus, \((R_H)\) and/or \((R_\chi)\) yield (8) with

\[
 r = 1/\nu;
\]

the accuracy of estimation cannot be better than \(n^{-1/\nu} \).

If (8) holds for all small enough \(\varepsilon \) and \(J_{H,\cdot} \) is uniformly continuous on \(\mathcal{P} \), then

\[
 \sup_{P \in \mathcal{P}} J_{H,P}^{-1/2} \mathbb{E}_P^{1/2} d(\hat{a}_n, a_P)^2 \geq (r/e)^r n^{-r}/2. \tag{10}
\]

Calculating continuity moduli is not easy.

Example 3. Let \(\mathcal{P} = \{P_t, t \in \mathbb{R}\} \), where \(P_t = \mathcal{N}(t; 1) \), and let \(a_{P_t} = t \) and \(d(t; s) = |t - s| \). Then

\[
 w_H(P_t, \varepsilon) = \sqrt{\ln(1-\varepsilon^2)^{-2}} \geq \sqrt{2} \varepsilon
\]
for every t. Hence (8) and (10) hold with $J_{H,P} = \sqrt{2}$ and $r = 1/2$.

4 Uniform convergence

The rate of the accuracy of estimation cannot be better than $w_H(P, 1/\sqrt{n})$. If a_P is linear and class \mathcal{P} of distributions is convex, then there exists an estimator \hat{a}_n attaining this rate [2].

In typical non-parametric situations neither estimator converges locally uniformly with the optimal rate.

More information: [2, 3, 4].

Let \mathcal{P}' be a subclass of \mathcal{P}. Estimator \hat{a}_n converges weakly to a_P with the rate v_n uniformly in \mathcal{P}' if there exists a non-degenerate distribution P_0 such that

$$\lim_{n \to \infty} \sup_{P \in \mathcal{P}'} |P \left(\frac{(\hat{a}_n - a_P)}{v_n} \in A \right) - P_0(A)| = 0 \quad (11)$$

for every measurable set $A \subset \mathcal{X}$ with $P_0(\partial A) = 0$.

Theorem 4 Assume that $\mathcal{X} = \mathbb{R}$, and let $P \in \mathcal{P}$. If $w_H(P, \varepsilon) \sim J_{H,P} \varepsilon^{2r}$, where $r < 1/2$, and

$$\sup_{P_0 \in \mathcal{P}_H(P, 1/\sqrt{n})} |J_{H,P_0}/J_{H,P} - 1| \to 0$$

as $n \to \infty$, then neither estimator converges to a_P with the rate n^{-r} uniformly in $\mathcal{P}_H(P, 1/\sqrt{n})$.
References

