
Published version (with publisher's formatting)

This version is available at: http://eprints.mdx.ac.uk/17062/

Copyright:

Middlesex University Research Repository makes the University's research available electronically. Copyright and moral rights to this work are retained by the author and/or other copyright owners unless otherwise stated. The work is supplied on the understanding that any use for commercial gain is strictly forbidden. A copy may be downloaded for personal, non-commercial, research or study without prior permission and without charge.

Works, including theses and research projects, may not be reproduced in any format or medium, or extensive quotations taken from them, or their content changed in any way, without first obtaining permission in writing from the copyright holder(s). They may not be sold or exploited commercially in any format or medium without the prior written permission of the copyright holder(s).

Full bibliographic details must be given when referring to, or quoting from full items including the author's name, the title of the work, publication details where relevant (place, publisher, date), pagination, and for theses or dissertations the awarding institution, the degree type awarded, and the date of the award.

If you believe that any material held in the repository infringes copyright law, please contact the Repository Team at Middlesex University via the following email address:

eprints@mdx.ac.uk

The item will be removed from the repository while any claim is being investigated.

See also repository copyright: http://eprints.mdx.ac.uk/policies.html#copy
Composition operators induced by universal covering maps

Joint International Meeting AMS, EMS, and SPM

Matthew M. Jones

Middlesex University London

13th June 2015
Preliminaries

- \(\mathbb{D} = \{ z : |z| < 1 \} \)
- \(H^p (1 \leq p < \infty) \) the Hardy space, \(f \in H^p \) if and only if
 \[
 \| f \|_p^p = \lim_{r \to 1} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p \, d\theta < \infty
 \]
- If \(\phi : \mathbb{D} \to \mathbb{D} \) is holomorphic then the composition operator \(C_\phi \) is
 \[
 C_\phi : H^p \to H^p \\
 f \mapsto f \circ \phi
 \]
Theorem (Littlewood’s subordination theorem (1925))

Suppose that $\phi: \mathbb{D} \to \mathbb{D}$ is univalent and holomorphic, $\phi(0) = 0$. If $f \in H^p$ ($1 \leq p < \infty$) then

$$
\int_0^{2\pi} |f(\phi(re^{i\theta}))|^p \, d\theta \leq \int_0^{2\pi} |f(re^{i\theta})|^p \, d\theta
$$

So $C_\phi: H^p \to H^p$ is a bounded operator.
Theorem (Littlewood’s subordination theorem (1925))

Suppose that \(\phi : \mathbb{D} \to \mathbb{D} \) is univalent and holomorphic, \(\phi(0) = 0 \). If \(f \in H^p \ (1 \leq p < \infty) \) then

\[
\int_0^{2\pi} |f(\phi(re^{i\theta}))|^p \, d\theta \leq \int_0^{2\pi} |f(re^{i\theta})|^p \, d\theta
\]

So

\[
C_\phi : H^p \to H^p
\]

is a bounded operator.
Compactness of C_ϕ

If $\phi: \mathbb{D} \to \mathcal{D}_0$ is univalent then C_ϕ is compact if and only if

$$\lim_{|z|\to 1} \frac{1 - |\phi(z)|}{1 - |z|} = \infty.$$
Compactness of C_ϕ

If $\phi: \mathbb{D} \to \mathcal{D}_0$ is univalent then C_ϕ is compact if and only if

$$\lim_{|z| \to 1} \frac{1 - |\phi(z)|}{1 - |z|} = \infty.$$

The angular derivative does not exist anywhere.
Consider instead domains of the form

$$\mathcal{D} = \mathcal{D}_0 \setminus \{p_1, p_2, \ldots, p_n\}$$

where p_k, $k = 1, 2, \ldots, n$ are isolated points in \mathcal{D}_0.
The uniformization theorem

- For simply connected \mathcal{D}_0 we have the Riemann mapping theorem.
- There is a ‘unique’ univalent mapping ψ of \mathbb{D} onto \mathcal{D}_0.

- For domains $\mathcal{D} = \mathcal{D}_0 \setminus \{p_1, p_2, \ldots, p_n\}$ we must employ the uniformization theorem.
- There is a holomorphic universal covering map of \mathbb{D} onto \mathcal{D}.
The universal covering map

\[\mathbb{D} \to \tilde{\mathbb{D}} \xrightarrow{\tilde{\phi}_D} \mathcal{R}_D \cong \mathbb{D}/\Gamma \xrightarrow{\pi} \mathbb{D} \]

Composition operators induced by universal covering maps
Example

- Riemann mapping from \mathbb{D} to \mathbb{D} is $\psi(z) = z$
- A universal covering map from \mathbb{D} to $\mathbb{D}\{0\}$ is
 \[
 \phi(z) = \exp\left(-\frac{1+z}{1-z}\right)
 \]
- Note ϕ is an inner function with
 \[
 \lim_{r \to 1^-} |\phi(re^{i\theta})| = \begin{cases}
 0, & \theta = 0 \\
 1, & \text{otherwise}
 \end{cases}
 \]
Multivalent functions

Definition (Nevanlinna’s counting function)

For any function $\phi: \mathbb{D} \to \mathbb{D}$

$$\mathcal{N}_\phi(w) = \begin{cases} \sum_{z: \phi(z) = w} \log \frac{1}{|z|} & w \in \phi(\mathbb{D}) \\ 0 & w \in \mathbb{D} \setminus \phi(\mathbb{D}) \end{cases}$$
Definition (Nevanlinna’s counting function)

For any function $\phi: \mathbb{D} \to \mathbb{D}$

$$\mathcal{N}_\phi(w) = \begin{cases}
\sum_{z: \phi(z) = w} \log \frac{1}{|z|} & w \in \phi(\mathbb{D}) \\
0 & w \in \mathbb{D} \setminus \phi(\mathbb{D})
\end{cases}$$

Theorem (Shapiro’s compactness criterion)

C_ϕ is compact on H^p if and only if

$$\lim_{|w| \to 1} \frac{\mathcal{N}_\phi(w)}{\log 1/|w|} = 0$$
Proof of results

For our universal covering map

$$\phi: \mathbb{D} \rightarrow \mathcal{D} = \mathcal{D}_0 \setminus \{p_1, \ldots, p_n\}$$

we have:

- $\mathcal{R}_\mathcal{D} \simeq \mathbb{D}/\Gamma$ for Γ a torsion-free Fuchsian group
- $\Lambda(\Gamma) –$ the limit set of Γ – satisfies $\Lambda(\Gamma) \subset \partial \mathbb{D}$
- $\phi^{-1}(w)$ is a Γ-orbit
- $z_1, z_2 \in \phi^{-1}(w)$ if and only if $\exists h \in \Gamma$ such that $z_1 = h(z_2)$.
Main results

Theorem

Suppose that $\mathcal{D} = \mathcal{D}_0 \setminus \{p_1, \ldots, p_n\}$ and ϕ is a universal covering of \mathbb{D} onto \mathcal{D}. Then C_{ϕ} is compact on H^p, $1 \leq p < \infty$, if and only if

$$\lim_{z \to \zeta} \frac{1 - |\phi(z)|}{1 - |z|} = \infty$$

for all $\zeta \in \partial \mathbb{D}$.
Main results

Theorem

Suppose that \(\mathcal{D} = \mathcal{D}_0 \setminus \{p_1, \ldots, p_n\} \) and \(\phi \) is a universal covering of \(\mathbb{D} \) onto \(\mathcal{D} \). Then \(C_\phi \) is compact on \(H^p \), \(1 \leq p < \infty \), if and only if

\[
\lim_{z \to \zeta} \frac{1 - |\phi(z)|}{1 - |z|} = \infty
\]

for all \(\zeta \in \partial \mathcal{D} \).

Theorem

Suppose that \(\mathcal{D} = \mathcal{D}_0 \setminus \{p_1, \ldots, p_n\} \), \(\phi \) is a universal covering of \(\mathbb{D} \) onto \(\mathcal{D} \), and \(\psi \) is the univalent Riemann mapping of \(\mathbb{D} \) onto \(\mathcal{D}_0 \). Then \(C_\phi \) is compact on \(H^p \), \(1 \leq p < \infty \), if and only if \(C_\psi \) is.
Proof of results

Definition (The Poincare series)
For a Fuchsian group Γ and $z, w \in \mathbb{D}$

$$\rho_{\Gamma}(z, w; s) = \sum_{g \in \Gamma} \exp(-sd_{\mathbb{D}}(z, g(w)))$$

where

$$d_{\mathbb{D}}(z, w)$$

is the hyperbolic distance in \mathbb{D}.
Lemma

There are constants c_1 and c_2 such that for $w = \phi(z)$ suitably chosen

$$c_1 \rho_\Gamma(0, z; 1) \leq N_\phi(w) \leq c_2 \rho_\Gamma(0, z; 1)$$
Proof of result

Lemma

C_ϕ is compact on H^p if and only if for all $\zeta \not\in \Lambda(\Gamma)$

$$\lim_{z \to \zeta} \frac{\rho_\Gamma(0, z; 1)}{1 - |\phi(z)|} = 0$$

Lemma

If Γ is finitely generated then there are constants c_1 and c_2 such that for z close enough to $\partial D \setminus \Lambda(\Gamma)$

$$c_1(1 - |z|^2) \leq \rho_\Gamma(0, z; 1) \leq c_2(1 - |z|^2)$$
Proof of main result

1. C_ϕ compact if and only if for all $\zeta \not\in \Lambda(\Gamma)$

$$\lim_{z \to \zeta} \frac{\rho_{\Gamma}(0, z; 1)}{1 - |\phi(z)|} = \lim_{z \to \zeta} \frac{1 - |z|}{1 - |\phi(z)|} = 0$$

2. $\Lambda(\Gamma)$ consists of:
 - fixed points of parabolic elements (correspond to p_i)
 - points of approximation (where orbits converge non-tangentially and therefore ϕ is fixed on a sequence converging non-tangentially)
These results can be extended to general (finitely) multiply connected domains.

These results can be extended to general (finitely) multiply connected domains.

Widely applicable in the study of composition operators since the Nevanlinna counting function appears often.

The characterisation of Schatten class composition operators in particular employs \mathcal{N}_ϕ.

Matthew M. Jones

Composition operators induced by universal covering maps