
http://dx.doi.org/10.1109/LICS.2012.75

Final accepted version (with author's formatting)

Available from Middlesex University’s Research Repository at http://eprints.mdx.ac.uk/15168/

Copyright:

Middlesex University Research Repository makes the University's research available electronically.

Copyright and moral rights to this thesis/research project are retained by the author and/or other copyright owners. The work is supplied on the understanding that any use for commercial gain is strictly forbidden. A copy may be downloaded for personal, non-commercial, research or study without prior permission and without charge. Any use of the thesis/research project for private study or research must be properly acknowledged with reference to the work's full bibliographic details.

This thesis/research project may not be reproduced in any format or medium, or extensive quotations taken from it, or its content changed in any way, without first obtaining permission in writing from the copyright holder(s).

If you believe that any material held in the repository infringes copyright law, please contact the Repository Team at Middlesex University via the following email address:

eprints@mdx.ac.uk

The item will be removed from the repository while any claim is being investigated.
Foundational, Compositional (Co)datatypes for Higher-Order Logic

Category Theory Applied to Theorem Proving

Dmitriy Traytel
Technische Universität München
Munich, Germany

Andrei Popescu
Technische Universität München
Munich, Germany

Institute of Mathematics Simion Stoilow
Bucharest, Romania

Jasmin Christian Blanchette
Technische Universität München
Munich, Germany

Abstract—Interactive theorem provers based on higher-order logic (HOL) traditionally follow the definitional approach, reducing high-level specifications to logical primitives. This also applies to the support for datatype definitions. However, the internal datatype construction used in HOL4, HOL Light, and Isabelle/HOL is fundamentally noncompositional, limiting its efficiency and flexibility, and it does not cater for codatatypes.

We present a fully modular framework for constructing (co)datatypes in HOL, with support for mixed mutual and nested (co)recursion. Mixed (co)recursion enables type definitions involving both datatypes and codatatypes, such as the type of finitely branching trees of possibly infinite depth. Our framework draws heavily from category theory. The key notion is that of a bounded natural functor—an enriched type constructor satisfying specific properties preserved by interesting categorical operations. Our ideas are implemented as a definitional package in Isabelle, addressing a frequent request from users.

Keywords—Category theory, higher-order logic, interactive theorem proving, (co)datatypes, cardinals

I. INTRODUCTION

Higher-order logic (HOL, Sect. II) forms the basis of several popular interactive theorem provers, notably HOL4 [10], HOL Light [16], and Isabelle/HOL [27]. Its straightforward semantics, which interprets types as sets (collections) of elements, makes it an attractive choice for many computer science and mathematical formalizations.

The theorem provers belonging to the HOL family traditionally encourage their users to adhere to the definitional approach, whereby new types and constants are defined in terms of existing constructs rather than introduced axiomatically. Following the LCF philosophy [11], theorems can be generated only within a small inference kernel, reducing the amount of code that must be trusted.

The definitional approach is a harsh taskmaster. At the primitive level, a new type is defined by carving out an isomorphic subset from an existing type. Higher-level mechanisms are also available, but behind the scenes they reduce the user-supplied specification to primitive type definitions.

The most important high-level mechanism is undoubtedly the datatype package, which automates the derivation of (freely generated inductive) datatypes. Melham [26] had already devised such a definitional package two decades ago. His approach, considerably extended by Gunter [13], [14] and simplified by Harrison [15], now lies at the heart of the implementations in HOL4, HOL Light, and Isabelle/HOL.

Despite having withstood the test of time, the Melham–Gunter approach suffers from a few limitations that impair its usefulness. The most pressing issue is probably its ignorance of codatatypes (the coinductive counterpart of datatypes). Lacking a definitional package to automate the definition of codatatypes, users face a tough choice between tedious manual constructions and risky axiomatizations [17].

Creating a monolithic codatatype package to supplement the datatype package is not an attractive prospect, because many applications need to mix and match datatypes and codatatypes, as in the following nested-(co)recursive specification of finitely branching trees of possibly infinite depth:

\[
\text{datatype } \alpha \text{ list } = \text{Nil } | \text{Cons } \alpha \text{ (} \alpha \text{ list)}
\]

\[
\text{codatatype } \alpha \text{ tree } = \text{Node } \alpha \text{ (} \alpha \text{ tree) list}
\]

Ideally, users should also be allowed to define (co)datatypes with (co)recursion through well-behaved non-free type constructors, such as the finite set constructor fset:

\[
\text{codatatype } \alpha \text{ tree } = \text{Node } \alpha \left(\left(\alpha \text{ tree) fset}\right)
\]

This paper presents a fully compositional framework for defining datatypes and codatatypes in HOL, including mutual and nested (co)recursion through an arbitrary combination of datatypes, codatatypes, and other interesting type constructors (Sect. III). The underlying mathematical apparatus is taken from category theory. Our type constructors are functors satisfying specific semantic properties; we call them bounded natural functors (BNFs). Unlike all previous approaches implemented in HOL-based provers, our framework imposes no syntactic restrictions on the type constructors that can participate in nested (co)recursion.

The main mathematical contribution of this paper is a novel class of functors—the BNFs—that is closed under the initial algebra, final coalgebra, and composition operations and that allows initial and final constructions in a sufficiently
“local” way (Sect. IV). Cardinality reasoning with canonical membership-based well-orders lies beyond HOL’s expressive power, so we need a theory of cardinals that circumvents this limitation. Performing global categorical constructions in a weak, “local” formalism arguably constitutes the logical equivalent of walking on a tightrope.

We have formalized the development in Isabelle/HOL and are proceeding to implement a fully automatic definitional package for (co)datatypes based on these ideas to supplant the existing datatype package (Sect. V).

II. HIGHER-ORDER LOGIC (HOL)

By HOL we mean classical higher-order logic with Hilbert choice, the axiom of infinity, and rank-1 polymorphism. HOL is based on Church’s simple type theory [9]. It is the logic of Gordon’s original HOL system [10] and of its many successors and emulators. To keep the focus on the relevant issues, we present HOL not as a formal system but rather as a framework for expressing mathematics, much in the way that set theory is employed by working mathematicians.

The standard semantics of HOL relies on a universe \(\mathcal{U} \) of types, ranged over by \(\alpha, \beta, \gamma \), which we view as nonempty collections of elements. Membership of an element \(a \) in a type \(\alpha \) is written \(a : \alpha \). The type unit consists of a single element (\(_ \)), bool is the Boolean type, and nat is the type of natural numbers. Fixed elements of types, such as \(() : \text{unit} \), are called constants. Given \(\alpha \) and \(\beta \), we can form the type \(\alpha \rightarrow \beta \) of (total) functions from \(\alpha \) to \(\beta \). If \(f : \alpha \rightarrow \beta \) and \(a : \alpha \), then \(f \ a : \beta \) is the result of applying \(f \) to \(a \). The types \(\alpha + \beta \) and \(\alpha \times \beta \) are the disjoint sum and the product of \(\alpha \) and \(\beta \), respectively. For \(n \)-ary functions, we generally prefer the curried form \(f : \alpha_1 \rightarrow \cdots \rightarrow \alpha_n \rightarrow \beta \) to the tuple form.

HOL supports a restrictive, simply typed flavor of set theory. We write \(\alpha \set \) for the powertype of \(\alpha \), consisting of sets of \(\alpha \) elements; it is isomorphic to \(\alpha \rightarrow \text{bool} \). The universe set of \(\alpha \), \(U_\alpha : \alpha \set \), is the set consisting of all the elements of \(\alpha \). For notational convenience, we sometimes write \(a \) instead of \(U_a \). Given an element \(a : \alpha \) and a set \(A : \alpha \set \), \(a \in A \) tests whether \(a \) belongs to \(A \). Although the two concepts are related, set membership is not to be confused with type membership. Given a type \(\alpha \) and a predicate \(\varphi : \alpha \rightarrow \text{bool} \), we can form by comprehension the set \(\{ a : \alpha. \varphi a \} \) of type \(\alpha \) set.

While unit, bool, and nat are types in their own right, set, \(\rightarrow \), \(+ \), and \(\times \) are type constructors, i.e., functions on the universe of types. The first of these is unary, and the last three are binary. Types are a special case of type constructors, with arity 0. We can introduce new type constructors as combinations of existing ones; for example, we can define the ternary type constructor \((\alpha_1, \alpha_2, \alpha_3) \) as \((\alpha_2 + \alpha_1) \times (\alpha_3 \set) \). Except for infix operators, type constructor application is written in postfix notation (e.g., \(\alpha \ F \)) and function application in prefix notation (e.g., \(f \ a \)).

Depending on the context, \((\alpha_1, \ldots, \alpha_n) \) \(F \) either denotes the application of \(F \) to \((\alpha_1, \ldots, \alpha_n) \) or simply indicates that \(F \) is an \(n \)-ary type constructor. We abbreviate \((\alpha_1, \ldots, \alpha_n) \) \(F \) to \(\prod F \). Given a binary type constructor \((\alpha_1, \alpha_2) \) \(F \) and a fixed type \(\beta \), \((_, \beta) \) \(F \) denotes the unary type constructor sending an arbitrary type \(\alpha \) to \((\alpha, \beta) \) \(F \), and similarly for \((\beta, _) \) \(F \).

As the main primitive way of introducing custom types, HOL lets us carve out from an existing type \(\alpha \) a type isomorphic to a nonempty set \(A : \alpha \set \), yielding a type \(\beta \) and an injective function \(f : \beta \rightarrow \alpha \) whose image is \(A \).

Polymorphic constants can be regarded as families of constants indexed by types. For example, the identity function \(\text{id} : \alpha \rightarrow \alpha \) is defined for any type \(\alpha \) and corresponds to a family \((\text{id}_\alpha)_{\alpha \in \mathcal{U}} \). \(\text{id} : (\alpha \times \alpha) \rightarrow \text{id} \alpha \times \text{id} \alpha \) is the identity relation. Function composition \(\circ \) has type \((\beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \gamma \). Type arguments can be indicated by a subscript (e.g., \(U_{\alpha} \)).

HOL is significantly weaker than the set theories popular as foundations of mathematics, such as Zermelo–Fraenkel with the axiom of choice (ZFC). Some standard mathematical constructions cannot be performed in HOL, notably those dealing with proper classes or families of unboundedly large sets. A typical example is the representation of the HOL semantics, due to the unbounded nature of the simple type hierarchy. Another example is the standard (membership-based) theory of ordinals and cardinals, which involves the well-ordered class of ordinals. Nonetheless, many standard mathematical constructions are local, meaning that they are performed within an arbitrary but fixed universe set. These are particularly well suited to (polymorphic) HOL. Examples include basic algebra and analysis, formal language theory, and structural operational semantics. A large body of mathematics can be expressed adequately in HOL, as witnessed by the extensive library developments in HOL-based provers.

III. DATATYPES IN HOL

The limitations of HOL mentioned above may seem exotic and contrived. Yet our application—datatype definitions—is precisely one of those areas where HOL’s lack of expressiveness is most painfully felt. Category theory offers a powerful, modular methodology for constructing (co)datatypes, but filling the gap between theoretical category theory and theorem proving in HOL, with its simply typed set theory, is challenging; indeed, it is the main concern of this paper.

A. The Melham–Gunter Approach

Melham’s original datatype package [26] is based on a manually defined polymorphic datatype of finite labeled trees, from which simple datatypes are carved out as subsets. Gunter [13] generalized the package to support mutually recursive datatypes. She also showed how to reduce specifications with nested recursion to mutually recursive specifications. A typical example is the recursive occurrence of \(\alpha \text{tree}_F \) nested in the list type constructor in the definition of finite trees. To define such a type, Gunter unfurls the definition of \(\text{list} \), resulting in a mutually recursive definition of trees (\(\alpha \text{tree}_F \)) and “lists-of-trees” (\((\alpha \text{tree}_F)_\text{list} \)):

\[
\text{datatype} \ \alpha \text{tree}_F = \begin{cases} \alpha \text{Node} \ (\alpha \text{tree}_F)_\text{list} \\ \alpha \text{nil} \ | \ \alpha \text{Cons} \ (\alpha \text{tree}_F) \ (\alpha \text{tree}_F)_\text{list} \end{cases}
\]

Exploiting an isomorphism, the package translates occurrences of \(\alpha \text{tree}_F \) \text{list} to \((\alpha \text{tree}_F)_\text{list} \) list, maintaining to a large extent
the illusion of nested recursion. Orthogonally, Gunter [14] extended Melham’s labeled trees with infinite branching to support positive recursion through functions.

The handling of nested recursion by mutual recursion has several limitations, all related to its nonmodularity. Most importantly, it is not clear how to extend the approach to nested recursion and corecursion or to non-free constructors. Also, replaying recursive definitions and transferring results via isomorphisms is prohibitively slow for datatypes with many layers of nesting.

B. Bringing HOL Closer to Category Theory

Let \(\alpha \) \(F \) be a unary type constructor. Category theory has elegant devices to define, based on \(F \), the associated datatype and codatatype by solving the equation \(\alpha \cong \alpha F \) (up to isomorphism) in a minimal and maximal way, obtaining the initial \(F \)-algebra and final \(F \)-coalgebra, respectively. However, this requires \(F \) to be complemented by an action on functions between types, usually called a “map.”

The universe of types \(\mathcal{U} \) naturally forms a category where the objects are types and the morphisms are functions between types. We are interested in type constructors \((a_1, \ldots, a_n) F\) that are also functors on \(\mathcal{U} \), i.e., that are equipped with an action on morphisms commuting with identities and composition. Taking advantage of polymorphism, this action can be expressed as a constant \(\text{Fmap} \) \(: (\alpha_1 \to \beta_1) \to \cdots \to (\alpha_n \to \beta_n) \to \pi F \to \beta F \) satisfying \(\text{Fmap id} \ldots id = id \) and \(\text{Fmap} (g_1 \circ f_1) \ldots (g_n \circ f_n) = \text{Fmap} g \circ \text{Fmap} f \). Functors on \(\mathcal{U} \) can be written as pairs \((F, \text{Fmap})\). Let us review some basic examples of functors.

\((n, \alpha)\)-constant functor \((C_{n,a}, C_{n,a})\): The \((n, \alpha)\)-constant functor \((C_{n,a}, C_{n,a})\) is the \(n\)-ary functor consisting of the constant type constructor \((\beta_1, \ldots, \beta_n) C_{n,a} = \alpha\) and the constant map function \(C_{n,a} f_1 \cdots f_n = \text{id}\).

Sum functor \((+, \oplus)\): \(a_1 + a_2\) consists of a copy \(\text{Inl} a_1\) of each element \(a_1\) and a copy \(\text{Inr} a_2\) of each element \(a_2\). Given \(f_1 : a_1 \to \beta\) and \(f_2 : a_2 \to \beta\), let \([f_1, f_2] : a_1 + a_2 \to \beta\) be the function sending \(\text{Inl} a_1\) to \(f_1 a_1\) and \(\text{Inr} a_2\) to \(f_2 a_2\). Given \(f_1 : a_1 \to \beta\) and \(f_2 : a_2 \to \beta\), let \([f_1 \oplus f_2] : a_1 + a_2 \to \beta\) be \(\text{Inl} (f_1 + f_2)\) and \(\text{Inr} (f_1 + f_2)\) for all \(f_1, f_2 : a_1 + a_2 \to \beta\).

Product functor \((\times, \otimes)\): Let \(\text{fst} : a_1 \times a_2 \to a_1\) and \(\text{snd} : a_1 \times a_2 \to a_2\) denote the two standard projection functions. Given \(f_1 : a \to \beta_1\) and \(f_2 : a \to \beta_2\), let \([f_1, f_2] : a \to \beta_1 \times \beta_2\) be the function \(a \to (f_1 a, f_2 a)\). Given \(f_1 : a_1 \to \beta_1\) and \(f_2 : a_2 \to \beta_2\), let \([f_1 \otimes f_2] : a_1 \times a_2 \to \beta_1 \times \beta_2\) be \((f_1 \circ \text{fst}, f_2 \circ \text{snd})\).

α-Function space functor \((\text{fun}_{\alpha} , \text{comp}_{\alpha})\): Given a type \(\alpha\), let \(\beta \text{fun}_{\alpha} = \alpha \to \beta\). For all \(g : \beta \to \gamma\), we define \(\text{comp}_{\alpha} g : \beta \text{fun}_{\alpha} \to \gamma \text{fun}_{\alpha}\) as \(\text{comp}_{\alpha} g f = g \circ f\).

Powertype functor \((\text{set}, \text{image})\): The function image \(f : \alpha \set\to \beta\) sends each set \(A\) to the image of \(A\) through the function \(f : \alpha \to \beta\).

k-Powertype functor \((\text{set}_k, \text{image}_k)\): Given a cardinal \(k\), for all types \(\alpha\), we define the type \(\alpha \text{set}_k\) by comprehension, carving out from \(\alpha\) set only those sets of cardinality \(<k\).

Although specific map functions are heavily used in HOL theories (e.g., map, image), the theorem provers traditionally do not record the functorial structure \(\text{Fmap}\) of \(F\) or take advantage of it when defining datatypes. The next examples illustrate the benefits of keeping such additional structure.

Finite lists: The unary type constructor list, which sends each type \(\alpha\) to the type \(\alpha\) list of lists of \(\alpha\) elements, is categorically given as the initial algebra on the second argument of the binary functor \((F, \text{Fmap})\), where \((\alpha, \beta) F = \text{unit} + \alpha \times \beta\) and \(\text{Fmap} f g = \text{id} \oplus f \circ g\). More precisely, there exists a (polymorphic) folding bijection \(\text{fld} : (\alpha, \alpha\text{ list}) F \to \alpha\text{ list}\) making \((\alpha, \text{list})\) the initial algebra for the unary functor \((\alpha, __ F)\). Here, \(\text{fld} = (\text{Nil, Cons})\), where Nil and Cons are the familiar list operations. The initial algebra property corresponds to the availability of the standard iterator for lists. Then \((\text{list}, \text{map})\) is itself a unary functor.

Finitely branching trees of finite depth: Defining lists is hardly a spectacular achievement. It is the abstract interface to lists that makes category theory relevant: \((\text{list}, \text{map})\) is simply another functor available for nesting in co(datatype) definitions. Assume we want to define finitely branching trees of finite depth. This involves taking the initial algebra \(\alpha \text{tree}_F\) on the second argument of the functor \((G, \text{Gmap})\), where \((\alpha, \beta) G = \alpha \times \beta \text{ list}\) and \(\text{Gmap} f g = f \otimes \text{map} g\). The resulting iterator \(\text{iter} : (\alpha \times \beta \text{ list} \to \beta) \to \alpha \text{tree}_F \to \beta\) has the characteristic equation \(s \circ \text{fld} = s \circ (\text{id} \otimes \text{map} (\text{iter} s))\), where \(\text{fld}\) is the folding bijection for \(\alpha \text{tree}_F\) (Fig. 1). Thus, the “contract” of tree iteration reads: Given tree-like structure \(\beta\) on \(\beta\) as the function \(s : \alpha \times \beta \text{ list} \to \beta\) (viewing \(\beta\) as consisting of “abstract trees,” with constructor \(s\)), provide \(s\) such that \(\text{iter} s = s (\text{fld} (a, t)) = s (\alpha, (\text{map} (\text{iter} s) t))\), for all \(a : \alpha\) and \(t : (\alpha \text{tree}_F)\) list. By using the map interface for accessing lists, the characteristic equation for \(\text{iter}\) abstracts away from the definition of lists, enabling truly modular nesting of recursive types inside recursive definitions of larger types. The categorical approach also handles nested recursion through corecursion, as illustrated next.

Finitely branching trees of possibly infinite depth: To define trees of possibly infinite depth, we can take the final coalgebra \(\alpha \text{tree}_I\) on the second argument of the functor \((G, \text{Gmap})\) defined above. The resulting coiterator coiter has polymorphic type \(\beta \to \alpha \times \beta\text{ list}\) \(\to \beta\to \alpha \text{tree}_I\), and its characteristic equation is \(\text{unf} \circ \text{coiter} s = (\text{id} \otimes \text{map} (\text{coiter} s)) \circ s\), where \(\text{unf}\) is the unfolding bijection associated with \(\alpha \text{tree}_I\) (Fig. 2). Normally, we would split \(\text{unf}\) into two functions as \(\text{unf} = (\text{lab}, \text{sub})\), where, for any \(r : \alpha \text{tree}_I\), \(\text{lab} r : \alpha\) is the label of the root and \(\text{sub} r\) is the list of its subtrees. By also splitting \(s : \beta \to \alpha \times \beta\text{ list}\) into a pair of functions \(L, S\), the contract of tree coiteration reads: Given a tree-like structure \(\beta\) consisting of functions \(L, S : \beta \to \alpha\) and \(S : \beta \to \beta\text{ list}\), yield a function coiter \((L, S) b = L b\) and \(\text{sub} (\text{coiter} (L, S) b) = \text{map} (\text{coiter} (L, S) (S b))\) for all \(b : \beta\).

Unordered finitely branching trees of possibly infinite depth: Assume that we want our finitely branching trees to be unordered. Instead of lists, we can employ finite sets (or even finite multisets). We can then define \(\alpha \text{tree}_{H\text{map}}\) as the final coalgebra of the functor \((H, \text{Hmap})\), where \((\alpha, \beta) H = \alpha \times \beta \text{set}\) and \(\text{Hmap} f g = f \otimes \text{image} g\).
C. Bringing Category Theory Closer to HOL

Next we focus on devising a proper categorical setting to accommodate (co)datatype definitions. Our desired class \(\mathcal{K} \) of functors (perhaps with additional structure) on the universe \(K \) accommodates (co)datatype definitions. Our desired class \(C \). Bringing Category Theory Closer to HOL

The literature does not appear to provide a complete solution for the above system of constraints. An obvious candidate, the class of \(\omega \)-bicategorical functors \([25]\), satisfies C1–C3 but not C4, because the associated limit construction requires a logic that can express infinite type families (e.g., \((\text{unit } F^\omega)\)_n for the final coalgebra).

Many results from the literature are concerned only with a given type of construction, and only with admissibility (C2), ignoring closure (C3). Rutten’s monograph [33] focuses on coalgebras. It describes a general class of functors on sets, namely, those that preserve weak pullbacks and have a set of generators, or, sufficiently, preserve weak pullbacks and are bounded (in that there exists a cardinal upper bound for the coalgebras generated by any singleton in any of their coalgebras). The main issue with this class of functors is admissibility of initial algebras (C2-a). Closure properties (C3), which Rutten omits to discuss, might also be an issue.

Also focusing on coalgebra, Barr [5], [6] proves the existence of a final coalgebra for accessible functors on sets (i.e., functors preserving \(k \)-filtered colimits for some \(k \)). This result is an internalization to sets of Aczel and Mendler’s final coalgebra theorem [2] stated for set-based functors on classes. Moreover, Barr produces a bound for the size of the final coalgebra, assuming the existence of a certain large cardinal (subject to a property intermediate between weak and strong inaccessibility). However, \(k \)-filtered colimits are incompatible with C4 for the same reason \(\omega \)-limit constructions are, and internalizing the construction to a sufficiently large type using the provided cardinal bound is also infeasible, because it requires large cardinals whose existence is not provable in HOL or even ZFC. (C2-a and C3 might also be problematic.)

A different result from Barr [5] suggests yet another approach. It states that any quotient functor of an \(\omega \)-bicategorical functor admits a weakly final coalgebra obtained from any weakly final coalgebra of the latter. A subclass of \(\omega \)-bicategorical that admits HOL-expressible (co)datatype constructions could prove to be an answer to C1–C4 via this result. In fact, the class \(\mathcal{K} \) we adopt in this paper includes the class \(\mathcal{K}' \) of functors \(F \) that are quotients of \(\text{Fbd} \)-function-space functors, with \(\text{Fbd} \) a cardinal number depending on \(F \). Whether \(\mathcal{K}' \) is also a solution to C1–C4 remains for us an open question.

Hensel and Jacobs [18] propose a modular development of (co)datatypes for datafunctors, a syntactically specified class consisting of functors obtained from constants, \(+\), and \(\times \) by repeated application of composition, initial algebra, and final coalgebra. Datafunctors satisfy C1–C3 but ostensibly not C4, because the arguments, which employ abstract results on categorical logic and fibrations [19], rely on (co)limits. Another drawback of datafunctors is their failure to satisfy the desideratum D (even though the abstract results [19] may apply to a much larger class).

Abbott, Altenkirch, and Ghani [1] define container types (with an indexed extension [3] also covering terms with bindings) satisfying C1–C3, but not C4 (as they rely on dependent types) or D. Finally, Hoogendijk and de Moor [22] discuss container types as relations without analyzing C2–C4.
IV. BOUNDED NATURAL FUNCTORS

To accommodate constraints C1–C4 in HOL, we must work in a strict cardinal-bounded fashion, always keeping in sight a universe type able to host the necessary construction. Consequently, our functors will carry their cardinal bounds.

A useful means to keep cardinality under control is the consideration of a natural “atom” structure potentially available for the HOL type constructors in addition to the map structure. For the unary type constructor \(F \), we consider a polymorphic constant \(\text{Fset}: \alpha \to \alpha \text{ set} \), where \(\text{Fset} \) consists of all “atoms” of \(x \); for example, if \(F \) is list, \(\text{Fset} \) returns the set of elements in the list.

We think of the elements \(x \) of \(\alpha \) as consisting of a shape together with a content that fills the shape with elements of \(x \), with \(\text{Fset} \) returning this content in flattened format, as a set (Fig. 3). This suggests that \(\text{Fset} \) should be a natural transformation between the functors \((F, \text{Fmap})\) and \((\text{set}, \text{image})\) (i.e., the diagram in Fig. 4 commutes for all \(f: \alpha \to \beta \)). \(\text{Fset} \) allows us to internalize the type constructor \(F \) to sets of elements of given types \(\alpha \). Namely, we define \(\text{Fin}: \alpha \to (\alpha F) \) set by \(\text{Fin} \alpha = \{ x: \alpha F. \text{Fset} x \subseteq A \} \).

The generalization to \(n \)-ary functors is straightforward, with \(\text{Fin} \alpha_1 \ldots \alpha_n = \{ x: (\alpha_1 \ldots \alpha_n) F. \bigwedge_i \text{Fset} x \subseteq A_i \} \). In particular, \(\text{Fin} \alpha_1 \alpha_2 = \{ x: (\alpha_1, \alpha_2) F. \text{Fset}_2 x \subseteq A_2 \} \) (where the first occurrence of \(\alpha_1 \) is an abbreviation for \(U_{\alpha_1} \)).

Combining the map and set operators with suitable cardinal bounds, we obtain the following key notion, presented here for the binary case. A binary bounded natural functor (BNF) is a tuple \(\mathcal{F} = (F, \text{Fmap}, \text{Fset}, \text{Fbd}) \), where

- \(F \) is a binary type constructor,
- \(\text{Fmap}: (\alpha_1 \to \beta_1) \to (\alpha_2 \to \beta_2) \to (\alpha_1, \alpha_2) F \to (\beta_1, \beta_2) F \),
- \(\text{Fset}_i: (\alpha_1, \alpha_2) F \to \alpha_i \text{ set} \) for \(i \in \{1, 2\} \),
- \(\text{Fbd} \) is an infinite cardinal number,

satisfying the following properties:

\(\text{FUNC} (F, \text{Fmap}) \) is a binary functor.

\(\text{NAT}_1 \) For all \(\alpha_2 \), \(\text{Fset}_1 \) is a natural transformation between \((_ , \alpha_2) F, \text{Fmap} \) and \((\text{set}, \text{image})\).

\(\text{NAT}_2 \) For all \(\alpha_1 \), \(\text{Fset}_2 \) is a natural transformation between \((\alpha_1, _) F, \text{Fmap} \) and \((\text{set}, \text{image})\).

\(\text{WP} \) \((F, \text{Fmap})\) preserves weak pullbacks.

\(\text{CONG} \) If \(\forall x \in \text{Fset}_x \cdot f_i = g_i \) for all \(i \in \{1, 2\} \), then \(\text{Fmap} f_1 f_2 x = \text{Fmap} g_1 g_2 x \).

\(\text{CBD} \) The following cardinal-bound conditions hold:

- a. \(\forall x: (\alpha_1, \alpha_2) F. |\text{Fset}_x| \leq \text{Fbd} \) for all \(i \in \{1, 2\} \);
- b. \(|\text{Fin} A_1 A_2| \leq (|A_1| + |A_2| + 2) \text{Fbd} \).

Binary functors suffice to illustrate the functorial structure of the initial and final algebras, a structure that would be trivial if we started with unary functors. (The definition of \(n \)-ary BNFs is given elsewhere [34].)

Among the above conditions, \(\text{FUNC} \) and \(\text{NAT}_1 \) were already explained and motivated. \(\text{WP} \) is a technical condition allowing a smooth treatment of bisimulation relations, relevant for coinduction and corecursion [33]; unlike other (weak) limits, weak pullbacks involve a finite number of types and are hence expressible in HOL. \(\text{CONG} \) states that \(\text{Fmap} f_1 f_2 x \) is uniquely determined by the action of \(f_i \) on the atoms of \(x \). \(\text{Fset}_x \) — it ensures that \(\text{Fmap} \) behaves well with respect to \(\text{Fin} \). Finally, the cardinality conditions put bounds on the branching (CBD-a) and on the number of elements (CBD-b) of the functor \((F, \text{Fmap})\), and can be understood in terms of shape and content. Thus, CBD-a states that the \(F \)-shapes have no more than \(\text{Fbd} \) slots for contents, and CBD-b states that shapes are not too redundant, so that all possible combinations of shape and content do not exceed the number of assignments of contents to slots, \(A_1 + A_2 \to \text{Fbd} \). (The \(+2 \) addition is a technicality that covers the case where \(A_1 = A_2 = \emptyset \).)

We are now ready to state the main theoretical result of this paper:

Theorem 1: The class of BNFs satisfies constraints C1–C4 and desideratum D.

Proof sketch: We must show that basic type constructors form BNFs and that the operations of composition, initial algebra, and final coalgebra exist in HOL and have themselves a BNF structure. Sects. A–F below outline our proofs.
 unary BNFs $$F_i = (F^i, \text{Fmap}^i, \text{Fset}^i, \text{Fbd}^i)$$ with $$i \in \{1, 2\}$$ and a binary BNF $$G = (G, \text{Gmap}, \text{Gset}, \text{Gbd})$$, their composition is the unary BNF $$H = G \circ (F_1, F_2)$$ defined as follows:
- $$(H, \text{Hmap})$$ is the functorial composition of $$(G, \text{Gmap})$$ with $$(F^1, \text{Fmap}^1)$$;
- $$\text{Hset} y = \bigcup_{x \in \text{Gset}^1} F^1 x \cup \bigcup_{y \in \text{Gset}^2} F^2 x$$;
- $$\text{Hbd} = \text{Gbd} * (\text{Fbd}^1 + \text{Fbd}^2)$$.

Although we seldom emphasize its role, composition is a pervasive auxiliary operation in interesting (co)datatypes.

C. Relators

A key insight due to Rutten [32] is that, thanks to WP, the functor $$(F, \text{Fmap})$$ has a natural extension to a relator, i.e., a functor on the category of types and binary relations, denoted $$\cal R$$. We can express the relator action of $$F$$ as a polymorphic constant $$\text{Frel}_1 : (a \times a) \to (\beta_1 \times \beta_2) \to \cal R$$ defined as $$\text{Frel}_1 Q R = ((\text{Fmap} \text{fst} z, \text{Fmap} \text{snd} z)) \in \text{Fin} Q R$$.

For reasoning in HOL, it is convenient to take an alternative (equivalent) view of Frel, as an action on curried binary predicates of algebras and coalgebras.

For example:
- if $$F$$ is the product functor, $$\text{Fpred} \varphi \varphi_1 : (a_1 \to a_2 \to \text{bool}) \to (\beta_1 \to \beta_2 \to \text{bool}) \to (a_1, a_2) F \to (\beta_1, \beta_2) F \to \text{bool}$$.

D. The Categories of (Co)algebras

For this and the next two subsections, we fix a binary BNF $$F = (F, \text{Fmap}, \text{Fset}, \text{Fbd})$$. We first show how to construct in HOL the initial algebra (or, dually, the final coalgebra) on $$F$$.

For example, the list-defining BNF $$\alpha$$ has a natural extension to a subalgebra (quotient coalgebra) of $$\alpha$$.

The next two subsections describe the key aspects of these constructions in HOL, starting in each case with phase 2.

E. Initial Algebra

Initial algebra from weakly initial algebra: Given an algebra $$\mathcal{A} = (A, s)$$, let $$M_s$$ be the intersection of all sets $$B$$ such that $$(B, s)$$ is an algebra, and let $$\mathcal{M} (\mathcal{A})$$, the minimal subalgebra of $$\mathcal{A}$$, be $$(M_s, s)$$. It is obvious that there exists at most one morphism from $$\mathcal{M} (\mathcal{A})$$ to any other algebra. Then, given a weakly initial algebra $$\mathcal{C}$$, the desired initial $$\beta$$-algebra is its minimal subalgebra, $$\mathcal{M} (\mathcal{C})$$. Of course, $$\mathcal{M} (\mathcal{C})$$ depends on $$\beta$$ (which was fixed all along). Now $$\beta$$IF is introduced by a type definition, carving out the carrier set of $$\mathcal{M} (\mathcal{C})$$ as a new type, and the folding map $$\text{fld}$$ is defined by copying on $$\beta$$IF the structural map of $$\mathcal{M} (\mathcal{C})$$ (so that in effect $$(\beta$$IF, $$\text{fld}$$) becomes isomorphic to $$\mathcal{M} (\mathcal{C})$$).

Construction of a weakly initial algebra: This relies on a crucial lemma about the cardinality of minimal subalgebras, whose proof [34] employs the cardinality assumptions CBD.

Lemma 2: Let $$s : (\beta, \alpha) F \to \alpha$$. Then $$|M_s| \leq (|\beta| + 2)^{\text{Suc Fbd}}$$.

Let $$\Theta$$ be the set of all algebras $$\mathcal{A}$$ having as underlying type a type $$\gamma$$ of sufficiently large cardinality, $$(|\beta| + 2)^{\text{Suc Fbd}}$$.

The desired weakly initial algebra $$\mathcal{C}$$ is the product of all algebras in $$\Theta$$. Indeed, by Lemma 2, for any algebra $$\mathcal{B}$$, its minimal subalgebra $$\mathcal{M} (\mathcal{B})$$ is isomorphic to one in $$\Theta$$, to which $$\mathcal{C}$$
has a projection morphism. This gives a morphism from \(\forall \) to \(\forall \mathcal{B} \), hence also one from \(\forall \) to \(\mathcal{B} \). We have thus proved:

Prop. 3: \(\beta \text{IF, fld} \) is the initial \(\beta \)-algebra.

This yields an iterator \(\text{iter} : (\beta, \alpha) \to \beta \text{IF} \to \alpha \) such that \(\text{iter} \circ \text{fld} = s \circ \text{Fmap id} \text{iter} \) (cf. Fig. 1).

Structural induction: The set structure \(\text{Fset} \) of a BNF not only plays an auxiliary role in the datatype constructions but also provides a simple means to express induction abstractly, for arbitrary functors. Since \(\text{fld} \) is a bijection, for any element \(b \in \beta \text{IF} \) there is a unique \(y \in (\beta, \beta) \) \(\Rightarrow \) \(\text{fld} \) such that \(b = \text{fld} y \)—this is an abstract version of case analysis. Then the inductive components of \(b \) are precisely the elements of \(\text{Fset}_2 y \), and we have the following induction principle:

Prop. 4: Let \(\varphi : \beta \text{IF} \to \text{bool} \) and assume \(\forall y. (\forall b \in \text{Fset}_2 y. \varphi b) \Rightarrow \varphi (\text{fld} y) \). Then \(\forall b. \varphi b \).

For \(F = \text{unit} + \beta \times \alpha \) with \(\text{IF} = \text{list} \) (cf. Sect. III-B), the above is equivalent to the familiar induction principle.

BNF structure: It is standard to define a functorial structure for the initial algebra: \(\text{Fmap f} = \text{iter} (\text{fld} \circ \text{Fmap id} f) \). As for the set structure, consider \(b \in \beta \text{IF} \). Intuitively, \(\text{IFset b} \) should contain all the \(\text{Fset}_1 \) atoms of \(b \), then the \(\text{Fset}_1 \) atoms of its inductive components, and so on, iteratively. Moreover, as we have seen, delving into the inductive components is achieved by means of \(\text{Fset}_2 \). We are led to define \(\text{IFset} \) as iter collect, i.e., as the unique function making the Fig. 6 diagram commute, where \(\text{collect} a = \text{Fset}_1 a \cup \bigcup \text{Fset}_2 a \).

Prop. 5: \((\text{IF, IFmap, IFset, 2}^{\text{Fbd}}) \) is a BNF.

As a BNF, \(\text{IF} \) is also a relator (Sect. C). Importantly for modular reasoning, we can express \(\text{IFpred} \) directly in terms of \(\text{Fpred} \). \(\text{IFpred} \) is characterized by the recursive equation \(\text{IFpred } \varphi (\text{fld} x_1) (\text{fld} x_2) \iff \text{Fpred } \varphi (\text{IFpred } \varphi) x_1 x_2 \). For the list functor, the above equation expands to four equations that follow the structure of the component functors (\(\text{unit} \), +, and \(\times \)), revealing \(\text{list} _\varphi \) as the componentwise extension of the predicate:

- \(\text{list} _\varphi \text{Nil Nil} \iff \text{True} \);
- \(\text{list} _\varphi \text{Nil (Cons b bs)} \iff \text{False} \);
- \(\text{list} _\varphi \text{ (Cons a as) Nil} \iff \text{False} \);
- \(\text{list} _\varphi \text{ (Cons a as) (Cons b bs)} \iff a b \land \text{list} _\varphi \text{ bs} \).

F. Final Coalgebra

Final coalgebra from weakly final coalgebra: This follows by the standard coalgebraic theory of bisimulation relations [33]. A bisimulation on a coalgebra \(\mathcal{A} = (A, s) \) is a relation \(R \subseteq A \times A \) such that \(\forall (a, b) \in R. \exists z \in \text{Fin } B \beta \text{R} \). \(\text{Fmap id} z = s a \land \text{Fmap id snd} z = s b \), i.e., such that in Fig. 7 (left) there exists a function along the dashed arrow making the two diagrams commute. This abstract concept covers the natural ad hoc notions of bisimulation for concrete functors [33]. A bisimulation \(R \) is effectively an endomorphism on \(A \) in the types-and-relations category \(\mathcal{B} \) such that \((a, b) \in R \) implies \((s a, s b) \in \text{Frel Id } R \)—Fig. 7 (right). Hence composition of bisimulations is a bisimulation, and so it follows easily that the largest bisimulation \(\text{LB} (\mathcal{A}) \) on a coalgebra \(\mathcal{A} \) is an equivalence relation, and that the resulting quotient coalgebra \(\mathcal{A}/_{\text{LB} (\mathcal{A})} \) has the property that any coalgebra has at most one morphism to it.

Now let \(\mathcal{C} \) be a weakly final coalgebra. By the above discussion, via an argument dual to the corresponding one for algebras, we have \(\mathcal{C}/_{\text{LB} (\mathcal{C})} \) final and based on it we define the desired type \(\beta \text{JF} \) and its unfolding bijection \(\text{unf} \).

Construction of a weakly final coalgebra: The abstract construction indicated in Rutten [33], as the sum of all coalgebras over a sufficiently large type (roughly dual to our weakly initial algebra construction), is possible in HOL thanks to our cardinality provisos. However, a more concrete construction gives us a better grip on cardinality, allowing us to check the BNF properties for the resulting coalgebra.

To lighten the presentation, we identify sets with types—for example, we allow ourselves to apply type constructors such as list to sets. Given a prefix-closed subset \(KL \) of Bfd list and \(kl \in KL \), we let \(\text{Bf}_{KlKl} \) the set of \(KL-branches \) of \(kl \), be \(\{ k. \, kl @ [k] \in KL \} \), where \(@ \) denotes list concatenation and \([k] \) the \(k \)-singleton list. We define an Fbd-tree to be a pair \((KL, lab) \), where \(KL \subseteq \text{Bfd} \) list is prefix-closed and \(lab : KL \to \text{Fin } \beta \text{Fbd} \) is such that \(\forall kl \in KL. \text{Fset}_2 (\text{lab } kl) = \text{Bf}_{KlKl} \). Thus, Fbd-trees are at most \(\text{Fbd} \)-branching trees labeled as follows: Every node is labeled with an element of \(\text{Fin } \beta \text{Fbd} \) whose set of second-argument atoms consists of precisely the node’s emerging branches. Let \(C \) be the set of Fbd-trees. Given \((KL, lab) \in C \), we define \(\text{sub}_{(KL, lab)} : \{ k. \, [k] \in KL \} \to C \) to send each \(k \) to the immediate \(k \)-subtree of \((KL, lab) \), more precisely,

\[
\text{sub}_{(KL, lab)} k = (KL', lab'), \quad \text{where } KL' = \{ kl'. \, [k] @ kl' \in KL \} \text{ and } lab' : KL' \to \text{Fin } \beta \text{Fbd} \text{ is defined by } lab' kl' = lab (\{ k @ kl' \}).
\]

The set \(C \) can be naturally organized as a coalgebra \(\mathcal{C} = (C, s) \) defining \(s (KL, lab) = \text{Fmap id} \text{sub}_{(KL, lab)} (lab Nil) \). Thus, \(s (KL, lab) \) operates on \((KL, lab) \)’s root label \(lab \) Nil, substituting in its shape the immediate subtrees for the contents. Then \(\mathcal{C} \) is shown to be a weakly final coalgebra by roughly the following argument. For each element \(a \) in a coalgebra \((A, t) \), we define its behavior tree by iterating the unfolding of \(a \).
according to t—first $t\ a$, then $t\ b$ for all $b \in \text{Fset}_2\ (t\ a)$, and so on. Thanks to CBD-a, such trees are at most Fbd-branching, hence representable in C. We have thus proved:

Prop. 6: ($\beta\ JF$, unf) is the final β-coalgebra.

This yields a coiterator $\text{coiter} : (a \to (\beta, a)\ F) \to \alpha \to \beta\ JF$ such that $\text{unf} (\text{coiter}\ s) = F\text{map}\ \text{id}\ (\text{coiter}\ s) \circ s$ (cf. Fig. 2).

Structural coinduction: Since LB$\langle \mathcal{C} \rangle$ is the greatest bismulation on \mathcal{C}, it follows that Id is the greatest bismulation on the quotient coalgebra $\mathcal{C}/_{LB}\langle \mathcal{C} \rangle$. This gives us the following coinduction principle on $(\beta\ JF, \text{unf})$ (which is a copy of $\mathcal{C}/_{LB}\langle \mathcal{C} \rangle$): If R is a bismulation relation, then $R \subseteq \text{Id}$. Viewing bismulations via the relator structure (cf. Fig. 7, left) and using the predicate notation, we can rephrase the coinduction principle as follows:

Prop. 7: Let $\varphi : \beta\ JF \to \beta\ JF \to \text{bool}$ and assume

$$\forall a, b. \ varphi\ a\ b \Rightarrow F\text{pred}\ \text{Eq}\ a\ (\text{unf}\ a)\ (\text{unf}\ b)$$

(where $\text{Eq} : \beta \to \beta \to \text{bool}$ is the equality predicate). Then $\forall a, b. \ varphi\ a\ b \Rightarrow a = b$.

BNF structure: The functorial structure of the final coalgebra is standard: $\text{Fmap}\ f = \text{coiter} (F\text{map}\ \text{id} \circ \text{unf})$. Moreover, Fset can be defined by collecting all the Fset_1 results of repeated unfolding, namely $\text{Fset}\ a = \bigcup_{i\in\nat} \text{collect}_{i,a}$, where $\text{collect}_{i,a}$ is defined recursively on i as follows: $\text{collect}_{0,a} = \emptyset$; $\text{collect}_{i+1,a} = \text{Fset}_1(\text{unf}\ a) \cup \{ \text{collect}_{i,b}, b \in \text{Fset}_2(\text{unf}\ a) \}$. Similarly to Fpred, the relator Fpred can be described in terms of Fpred, by $\text{Fpred}\ \varphi\ a_1\ a_2 \Leftrightarrow \text{Fpred}\ \varphi\ (\text{unf}\ a_1)\ (\text{unf}\ a_2)$.

Prop. 8: $(\beta\ JF, \text{Fmap}, \text{Fset}, \text{Fbd}^{\text{Fbd}})$ is a BNF.

V. DEFINITIONAL PACKAGE

The results in this paper are formalized in Isabelle/HOL and implemented in ML as a prototypical definitional package, together with a few examples of applications. This development is publicly available [35].

A. Implementation

Our constructions require a theory of cardinals in HOL, including cardinal arithmetic and regular cardinals. Simple type theory does not cater for ordinals as a canonical collection of well-orders, a very convenient concept for the standard theory of cardinals. Therefore, we work with well-orders directly, dispersed polymorphically over types, with cardinals defined as well-orders minimal with respect to initial-segment embeddings. This theory and its challenges are presented separately [31].

With the new (co)datatype package, users define (co)datatypes using an intuitive high-level specification syntax; internally, the package ensures that each specification corresponds to a BNF, defines the (co)datatype, and proves that the result is itself a BNF. More specifically, each BNF is represented by an ML record consisting of the polymorphic constants and their properties as proved theorems, stored in Isabelle’s theory database [39, §4.1]. The basic BNFs for unit, $+$, \times, func_α, fset, countable sets, and finite multisets are constructed in user space, as they do not require ML; users can register custom BNFs (e.g., for various other non-free constructors) in the same way.

In the simple (nonmutual) case, the package parses the right-hand side of a (co)datatype specification as a composition \mathcal{F} of already defined BNFs and proves that the result forms a BNF as in Sect. IV-B. Then the package defines the initial algebra or final coalgebra for \mathcal{F} and establishes automatically their characteristic theorems (for (co)recursion, (co)induction, etc.) and BNF structure as in Sect. IV-E or IV-F. All work is performed by dedicated Isabelle tactics, whose running time is independent of the amount of nesting (unlike for the Melham–Gunter approach).

B. Example

We demonstrate the definitional package on the type of finitely branching trees of possibly infinite depth [35]:

$$\text{datatype } \alpha\ \text{list} = \text{Nil} | \text{Cons}\ \alpha\ (\alpha\ \text{list})$$

$$\text{codatatype } \alpha\ \text{tree} = \text{Node}\ (\text{lab}:\ \alpha)\ (\text{sub}: (\alpha\ \text{tree})\ \text{list})$$

The declaration syntax allows named selectors (lab and sub) and constructors (Node).

The command derives the expected characteristic theorems for $\alpha\ \text{tree}_1$: By the coinduction rule

$$\forall a, b. \ \varphi\ a\ b \Rightarrow \text{lab}\ a\ =\ \text{lab}\ b\ \land\ \text{list}_\text{pred}\ \varphi\ (\text{sub}\ a)\ (\text{sub}\ b)$$

where $\text{list}_\text{pred}\ \varphi$ is the component extension of φ to lists (Sect. IV-E). Corecursive (coiterative) functions can be defined using a convenient syntax; for example, tree reversal is specified below in terms of map and rev on lists:

- $\text{corec}\ \text{trev}$
- $\text{lab}\ (\text{trev}\ t) = \text{lab}\ t$
- $\text{sub}\ (\text{trev}\ t) = \text{rev}\ (\text{map}\ \text{trev}\ (\text{sub}\ t))$

Using the tree coinduction rule and Isabelle’s automation, we can prove the following lemma with a one-line proof:

lemma $\text{trev}\ (\text{trev}\ t) = t$

The (co)datatype package interacts seamlessly with the existing infrastructure for reasoning about (co)inductive predicates (defined via Knaster–Tarski), as illustrated by the following proof of König’s lemma for $\alpha\ \text{tree}_1$. We first need a stream type to represent infinite paths in a tree:

$$\text{codatatype } \alpha\ \text{stream} = S\text{Cons}\ (\text{hd}:\ \alpha)\ (\text{tl}:\ \alpha\ \text{stream})$$

The existing coinductive package allows us to define the notions of an infinite tree and a proper path in a tree as the greatest predicates satisfying the equations infinite $t \Rightarrow (\exists u \in \text{set}\ (\text{sub}\ t). \ \text{infinite}\ u)$ and proper_path $p\ t \Rightarrow \text{hd}\ p = \text{lab}\ t \land (\exists u \in \text{set}\ (\text{sub}\ t). \ \text{proper_path}\ (\text{tl}\ p)\ u)$. The corecursive function wpath uses Hilbert choice (ϵ) to return a witness infinite path:

- $\text{corec}\ \text{wpath}$
- $\text{hd}\ (\text{wpath}\ t) = \text{lab}\ t$
- $\text{tl}\ (\text{wpath}\ t) = \text{wpath}\ (\epsilon\ u. \ u \in \text{set}\ (\text{sub}\ t) \land \text{infinite}\ u)$

We can then prove the desired lemma by coinduction:

lemma infinite $t \Rightarrow \text{proper_path}\ (\text{wpath}\ t)\ t$
VI. FURTHER RELATED WORK

Interactive theorem provers include various mechanisms for introducing new types, whether primitive (intrinsic), axiomatic, or definitional [7, p. 3]. In the world of HOL, the primitive type definition mechanism (Sect. II) and the datatype package (Sect. III-A) are the most widely used, but there are many others. Homeier [20] developed a package to define quotient types in HOL4, now ported to Isabelle [24]. Nominal Isabelle [36] extends HOL with infrastructure for reasoning about datatypes containing name binders; Urban is rebasing it on the quotient package, possibly in unison with our (co)datatype package to capitalize on the support for non-free constructors. HOLCF, a HOL library for domain theory, has long included an axiomatic package for defining (co)recursive domains; Huffman [23] recast it into a purely definitional package, based on a large enough universal domain (a useful simplification that unfortunately is not available for general HOL datatypes). The package combines many of the categorical ideas present in our work, notably the modular mixture of recursion via enriched type constructors. Some ideas have yet to be automated in a definitional package: Völker [37] sketches a categorical approach to datatypes that prefigures our work; Vos and Swierstra [38] elaborate an ad hoc construction for recursion through finite sets; and Paulson [29] designed building blocks for codatatypes.

PVS, whose logic is a simple type theory extended with dependent types and subtyping (but without polymorphism), provides monolithic axiomatic packages for datatypes [28] and codatatypes [12]. Hensel and Jacobs [18] illustrate the categorical approach to (co)datatypes in PVS by axiomatic declarations of various flavors of trees (including our treeF and tree1) with associated (co)iterators and proof principles. HOLω, which extends HOL4 with higher-rank polymorphism, provides a safe primitive for introducing abstractly specified types [21]. Isabelle/ZF, based on ZFC, reduces (co)datatypes to (co)inductive predicates [30], with no support for mixed (co)recursion; for codatatypes, it relies on a concrete, definitional treatment of non-well-founded objects. In Agda and Coq, (co)datatypes are built into the underlying calculus. Mixed (co)recursion is possible [8] but not the combination with non-free types.

VII. CONCLUSION

We presented a theoretical framework for defining types in higher-order logic. The framework relies on the abstract notion of a bounded natural functor (BNF), consisting of a type constructor plus further categorical structure. BNFs are closed under composition and (co)algebraic fixpoints, providing all the necessary ingredients to define (co)datatypes. The solution is foundational: The characteristic (co)datatype theorems are derived from an internal construction, rather than stated as axioms. Unlike the traditional Melham–Gunter approach, our solution is also fully compositional, enabling mutual and nested (co)recursion involving arbitrary combinations of datatypes, codatatypes, and custom BNFs.

There is a large body of previous work on (co)datatypes as (co)algebras in category theory. Our main contribution has been to adapt this work to achieve compatibility with HOL’s type system. Our ideas are implemented in a prototypical definitional package for Isabelle/HOL. The package is expected to be included in the next official release of the theorem prover, making Isabelle the first HOL-based prover with general support for codatatypes and thereby addressing a frequent request from users, helping Isabelle become an attractive vehicle for formalizations of infinite systems.

After implementing the original datatype package for Isabelle, Berghofer and Wenzel [7] suggested three areas for future work: codatatypes, non-freely generated types, and composition of definitional packages. Thirty years later, their vision is very close to a full materialization. Although we focused on Isabelle, our approach is equally applicable to the other HOL-based theorem provers, such as HOL4 [10], HOL Light [16], and ProofPower–HOL [4].

Methodologically, we found that category theory helped us develop intuitions about the types of HOL, recasting them as richly structured objects rather than mere collections of elements. As a continuation of this program, we want to dispel the myth that parametricity is inapplicable to HOL by extending BNF-like structures with a parametricity predicate and exploiting their relator nature. We also intend to transfer further category theory insight, such as the (co)induction mixture of Hensel, Hermida, and Jacobs [18], [19], to the world of theorem provers.

Acknowledgment: We thank Tobias Nipkow for encouraging this work, Brian Huffman and Christian Urban for their advice regarding Isabelle package writing, Florian Haftmann, Andreas Lochbihler, and Makarius Wenzel for inspiring discussions, and finally Elisa Gunter and Mark Summerfield for feedback on drafts of this paper. The research was supported by the project Security Type Systems and Deduction (grant Ni 491/13-1) as part of the program Reliably Secure Software Systems (RS³, Priority Program 1496) of the Deutsche Forschungsgemeinschaft (DFG). The third author was supported by the DFG project Quis Custodiet (grant Ni 491/11-2).

REFERENCES
