Effects of N-acetylaspartylglutamate (NAAG) at group II mGluRs and NMDAR

Fricker, Anne-Cécile, Mok, M. H. Selina, De la Flor, Raul, Shah, Ajit J., Woolley, Marie, Dawson, Lee A. and Kew, James N. C. (2009) Effects of N-acetylaspartylglutamate (NAAG) at group II mGluRs and NMDAR. Neuropharmacology, 56 (6-7). pp. 1060-1067. ISSN 0028-3908

Full text is not in this repository.

Abstract

A group II metabotropic glutamate receptor (mGluR) agonist was recently reported to be clinically efficacious against symptoms of schizophrenia [Patil, S.T., Zhang, L., Martenyi, F., Lowe, S.L., Jackson, K.A., Andreev, B.V., Avedisova, A.S., Bardenstein, L.M., Gurovich, I.Y., Morozova, M.A., Mosolov, S.N., Neznanov, N.G., Reznik, A.M., Smulevich, A.B., Tochilov, V.A., Johnson, B.G., Monn, J.A., Schoepp, D.D., 2007. Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized phase 2 clinical trial. Nature Med 13, 1102–1107]. The endogenous neuropeptide N-acetylaspartylglutamate (NAAG) has been described as an agonist at mGluR2 and mGluR3 [Wroblewska, B., Wroblewski, J.T., Pshenichkin, S., Surin, A., Sullivan, S.E., Neale, J.H., 1997. N-acetylaspartylglutamate selectively activates mGluR3 receptors in transfected cells. J. Neurochem. 69, 174–181; Cartmell, J., Adam, G., Chaboz, S., Henningsen, R., Kemp, J.A., Klingelschmidt, A., Metzler, V., Monsma, F., Schaffhauser, H., Wichmann, J., Mutel, V., 1998. Characterization of [3H]-(2S,2′R,3′R)-2-(2′,3′-dicarboxy-cyclopropyl)glycine ([3H]-DCG IV) binding to metabotropic mGlu2 receptor-transfected cell membranes. Br. J. Pharmacol. 123, 497–504] and is degraded by the enzyme glutamate carboxypeptidase II (also known as N-acetyl-α-linked acidic dipeptidase or NAALADase). Hence, elevating the concentration of endogenous NAAG by inhibition of NAALADase represents a potential strategy for the treatment of schizophrenia via group II mGluR activation. We therefore investigated the activity of NAAG at both rat native and human recombinant mGluRs. We found that NAAG had no effect on synaptic transmission at the medial perforant pathway inputs to the rat dentate gyrus which is known to be sensitive to group II mGluR activation. We proceeded to examine the effects of NAAG at human recombinant mGluR2 and mGluR3 in a cellular G protein-activated K+ channel electrophysiology assay. Furthermore, due to discrepancies in the literature concerning the activity of NAAG at the N-methyl-d-aspartate receptor [NMDAR; Westbrook, G.L., Mayer, M.L., Namboodiri, M.A., Neale, J.H., 1986. High concentrations of N-acetylaspartylglutamate (NAAG) selectively activate NMDA receptors on mouse spinal cord neurons in cell culture. J. Neurosci. 6, 3385–3392; Losi, G., Vicini, S., Neale, J., 2004. NAAG fails to antagonize synaptic and extrasynaptic NMDA receptors in cerebellar granule neurons. Neuropharmacology 46, 490–496], we also tested NAAG at NMDARs in rat hippocampal neurons in culture. We found that a purified NAAG preparation had no effect at mGluR2, mGluR3 or NMDAR. Taken together, these findings do not support a rationale for targeting NAALADase and increasing extracellular NAAG levels as a therapeutic strategy for the treatment of schizophrenia.

Item Type: Article
Keywords (uncontrolled): N-Acetylaspartylglutamate (NAAG); mGluR2; mGluR3; NMDAR
Research Areas: A. > School of Science and Technology > Natural Sciences
A. > School of Science and Technology > Natural Sciences > Reproductive Biology group
A. > School of Science and Technology > Natural Sciences > Biomarkers for Cancer group
Item ID: 11165
Useful Links:
Depositing User: Devika Mohan
Date Deposited: 04 Jul 2013 07:24
Last Modified: 13 Oct 2016 14:27
URI: https://eprints.mdx.ac.uk/id/eprint/11165

Actions (login required)

Edit Item Edit Item