
Published version (with publisher's formatting)
Available from Middlesex University’s Research Repository at http://eprints.mdx.ac.uk/10671/

Copyright:

Middlesex University Research Repository makes the University's research available electronically.

Copyright and moral rights to this thesis/research project are retained by the author and/or other copyright owners. The work is supplied on the understanding that any use for commercial gain is strictly forbidden. A copy may be downloaded for personal, non-commercial, research or study without prior permission and without charge. Any use of the thesis/research project for private study or research must be properly acknowledged with reference to the work’s full bibliographic details.

This thesis/research project may not be reproduced in any format or medium, or extensive quotations taken from it, or its content changed in any way, without first obtaining permission in writing from the copyright holder(s).

If you believe that any material held in the repository infringes copyright law, please contact the Repository Team at Middlesex University via the following email address:

eprints@mdx.ac.uk

The item will be removed from the repository while any claim is being investigated.
Interactive Effects of Joint Angle, Contraction State and Method on Estimates of Achilles Tendon Moment Arms

Florian Fath, Anthony J. Blazevich, Charlie M. Waugh, Stuart C. Miller, and Thomas Korff

1Brunel University; 2Edith Cowan University; 3Middlesex University

The muscle-tendon moment arm is an important input parameter for musculoskeletal models. Moment arms change as a function of joint angle and contraction state and depend on the method being employed. The overall purpose was to gain insights into the interactive effects of joint angle, contraction state and method on the Achilles tendon moment arm using the center of rotation (COR) and the tendon excursion method (TE). Achilles tendon moment arms were obtained at rest (TErest, CORrest) and during a maximum voluntary contraction (CORMVC) at four angles. We found strong correlations between TErest and CORMVC for all angles (.72 ≤ r ≤ .93) with Achilles tendon moment arms using CORMVC being 33–36% greater than those obtained from TErest. The relationship between Achilles tendon moment arms and angle was similar across both methods and both levels of muscular contraction. Finally, Achilles tendon moment arms for CORMVC were 1–8% greater than for CORrest.

Keywords: moment arm, ankle joint, tendon excursion, center of rotation

Muscle-tendon moment arms are important input parameters for musculoskeletal models. Achilles tendon moment arm (MAAT) has been estimated in vivo using both the tendon excursion (TE)1–3 and the center of rotation (COR) methods.4,5 Recently, MAAT magnitude was reported to be significantly smaller when the tendon excursion method was used compared with the center of rotation method. However, both methods correlated well across participants for a range of joint angles.6 Thus, the possibility exists that while MAAT estimates might differ between the methods, the joint-angle dependent changes in MAAT are relatively consistent. Furthermore, MAAT changes with the level of muscle contraction.4 However, contrary to the center of rotation method, the measurement of MAAT using the tendon excursion method during muscular contraction is associated with severe limitations. The tendon excursion method is based on the principle of virtual work7,8 and therefore assumes that the work done by an external torque is equivalent to the virtual work done by the muscles and tendons. Implicit in this is the assumption that no energy is lost during a muscle contraction. Given that muscles and tendons store, release and dissipate elastic energy during muscle contractions, the principle of virtual work is violated, and this violation is likely to be more significant when large muscle forces are produced. Using the relationship between moment arms obtained from the tendon excursion method at rest and those obtained using the center of rotation method during a MVC might therefore be a more meaningful way of accounting for contraction-dependent changes in moment arms derived from the tendon excursion method.

Therefore, the overall purpose of this study was to investigate the interactive effects of method, joint angle and contraction level on MAAT estimates. The specific aims were (1) to test the assumption that the MAAT estimated using the tendon excursion method at rest (TErest) would be related to estimates obtained using the center of rotation method during a MVC and (2) to test the assumption that joint angle-related changes in MAAT would be independent of method and contraction state.

Methods

With institutional ethical approval and after providing written informed consent, six healthy adults (4 men and
2 women) participated in this study (age = 30 ± 6 y, stature = 1.76 ± 0.11 m, mass = 74 ± 14 kg).

MAAT about the right ankle joint was obtained using both the center of rotation (at rest and during MVC) and the tendon excursion (at rest) methods. For the center of rotation method, participants were asked to lie supine in a 3-Tesla magnetic resonance imaging scanner (Siemens Magnetom Trio syngo magnetic resonance 2004A) with their leg straight (ie, knee angle = 0°). The foot was securely fastened with two inelastic Velcro straps. Magnetic resonance images were taken during rest and MVC (sagittal scans, repetition time = 600 [20] ms, echo time = 12 [5] ms, 3 [1] excitations, 300-mm field of view, 2 [3]-mm slice thickness for rest and MVC [ ], respectively) at six different ankle positions (60°–135°, in 15° increments; 90° = foot perpendicular to tibia). Using the magnetic resonance images, the center of rotation of the ankle joint, the line of action (of the Achilles tendon) and consequently the MAAT were determined during rest and MVC at ankle angles of 75°, 90°, 105° and 120° using the Reuleaux method as previously described by others in detail (Figure 1).4,9

For the tendon excursion method, participants were seated on an isokinetic dynamometer (Biodex System 3, Biodex Medical Systems, Inc., NY) with their right knee straight (0°) and a relative hip angle of 85°. The right foot was secured firmly to the dynamometer’s footplate with the lateral malleolus aligned with the center of rotation of the dynamometer. The ankle was passively rotated through its range of motion by the dynamometer five consecutive times at 10°·s⁻¹. For all participants, the range of motion was greater than 75° (dorsiflexion) and 120° (plantar flexion). To determine tendon displacement, a 10-MHz B-mode, 40-mm linear ultrasound probe (Esoate Megas GPX, Genova, Italy) was placed over the muscle-tendon junction of the gastrocnemius medialis. Raw position data (sampled at 1 kHz) from the isokinetic dynamometer were low-pass filtered (4th-order Butterworth, zero-lag, 3.75 Hz cut-off). Ultrasound video data were sampled at 25 Hz. The positions of the muscle-tendon

Figure 1 — Schematic illustration of the center of rotation method using the Reuleaux geometrical method to determine Achilles tendon moment arm (Reuleaux, 1875). Note. To determine the moment arm at 90°, for example, magnetic resonance scans were taken at 90 ± 15° and the center of rotation of the joint was subsequently determined. The tibia was assumed to be a constant throughout the joint rotation and the talus was designated as the rotating segment. Achilles tendon moment arm at 90° was defined as the perpendicular distance between the center of rotation of the ankle joint and the line of force (ie, the Achilles tendon).
juncture and the Achilles tendon were manually digi-
tized, low-pass filtered (4th-order Butterworth, zero-
lag, 2.63 Hz cut-off) and down-sampled to 25 Hz. The
tendon and joint angular displacement data were plotted
against joint angular displacement over the interval of
75° and 120°, and approximated by fitting a 2nd-order
polynomial (mean (±SD) coefficient of determination =
0.996 ± 0.002). To calculate the MAAT, the polynomial
was analytically differentiated at the four ankle angles
of interest. MAAT measurements were analyzed three
times at each angle for each method. The coefficient of
variation was smaller than 5% for all conditions. More
detailed descriptions of the experimental protocol and
the derivation of MAAT are published elsewhere.6

To determine the relationship between TErest and
CORMVC, four Pearson’s product-moment correlations
were performed (one at each angle). To test if MAAT
obtained using TErest, CORrest and CORMVC would change
similarly as a function of ankle angle, and, to determine
if this change was independent of muscular contraction
level, a repeated-measures ANOVA (3 × 3, TErest,
CORrest, CORMVC at ankle angles of 75°, 90° and 105°)
was performed. Here, we tested for a method × angle
interaction. To test this effect independent of differences
in MAAT magnitude, all MAAT values were normalized
by the MAAT obtained at 120° for the corresponding
condition. To further illustrate the changes of MAAT
across angles and method, we quantified the correlations
between MAAT and ankle angle for each participant
and each method. To provide more specific information about
the CORrest–CORMVC comparison, we also report percent-
age differences for all angles. Statistical significance was
accepted at an alpha of .05.

Results
The correlation coefficients quantifying the relationship
between TErest–CORMVC ranged between .72 and .93
(Table 1). The repeated-measures ANOVA revealed no
method × angle interaction ($F(4, 20) = 0.769; P = .558$)
(Figure 2). The mean correlations between MAAT and
ankle angle were 1 ± 0.00, .91 ± 0.10 and 0.95 ± 0.08
for TErest, CORrest and CORMVC, respectively. MAAT
magnitudes were larger at the 120° than the 75° ankle
angle with mean differences of 24.5 ± 12.2%, 19.9 ±
6.3% and 24.3 ± 7.3% for TErest, CORrest and CORMVC,
respectively. When comparing CORrest and CORMVC, the
percentage differences in MAAT (±SD) were 0.8 ± 6.5%,
3.7 ± 2.8%, 5.5 ± 6.4% and 7.9 ± 6% at ankle angles of
75°, 90°, 105° and 120°, respectively.

Discussion
The first aim of this study was to directly compare
MAAT obtained from TErest and CORMVC. We found
strong correlations between MAAT obtained from TErest
and CORMVC across a range of ankle angles with MAAT
values obtained from TArest being significantly smaller.
These results extend previous findings by demonstrating
that MAAT obtained using the center of rotation method
at MVC and tendon excursion method at rest are well
correlated and therefore independent of contraction state.6
The significantly smaller MAAT’s obtained from the tendon
excursion method can be explained by the viscoelastic
nature of the tendon. As the Achilles tendon becomes
more slack during the passive plantar flexion rotation,
the displacement of muscle tendon junction for a given
joint rotation is reduced which leads to an underestima-
tion of MAAT. The second aim was to test the hypothesis
that MAAT would change as a function of ankle angle
independently of the method of MAAT estimation. In
conformity with this hypothesis, we found (1) no angle
× method interaction and (2) similar moment arm-joint
angle correlations for all experimental conditions (Figure
2). Our results extend previous findings by demonstrating
that the relationship between MAAT and joint angle is not
only independent of muscular contraction level but also
of the method used.

Figure 2 — Achilles tendon moment arm measurements (mean ± SD) at four different ankle angles obtained from the tendon
excursion method at rest (TErest) and from the center of rotations method at both rest (CORrest) and during a maximum isometric
contraction (CORMVC). Note. 90° ankle angle refers to the foot being perpendicular to the tibia.
Table 1 Achilles tendon moment arm comparison at four different ankle angles obtained using the tendon excursion method at rest (TE rest) and the center of rotation method during a maximum isometric contraction (COR MVC)

<table>
<thead>
<tr>
<th>Ankle Angle</th>
<th>TE rest (mm; mean ± SD)</th>
<th>COR rest (mm; mean ± SD)</th>
<th>COR MVC (mm; mean ± SD)</th>
<th>TE rest–COR MVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>75°</td>
<td>30.8 ± 6.7</td>
<td>46.1 ± 3.3</td>
<td>46.5 ± 3.4</td>
<td>.72 .51 .11</td>
</tr>
<tr>
<td>90°</td>
<td>34.3 ± 4.5</td>
<td>51.7 ± 4.3</td>
<td>53.8 ± 5.5</td>
<td>.93 .86 .01</td>
</tr>
<tr>
<td>105°</td>
<td>37.9 ± 5.4</td>
<td>55.4 ± 1.5</td>
<td>58.5 ± 5.5</td>
<td>.77 .59 .07</td>
</tr>
<tr>
<td>120°</td>
<td>41.1 ± 6.9</td>
<td>56.7 ± 2.4</td>
<td>61.8 ± 5.2</td>
<td>.78 .61 .06</td>
</tr>
</tbody>
</table>

Another interesting aspect of our data is the difference in MA AT between COR rest and COR MVC. This difference ranged between 1 and 8%, which is considerably smaller than that reported by Maganaris et al., who found differences between 22 and 27%. This discrepancy can potentially be explained by the different knee angle used by Maganaris et al (90°) compared with the present investigation (0°). We adopted a knee angle of 0° in an attempt to minimize the influence of tendon slack, which has the potential to introduce errors into the MA AT estimation when using the tendon excursion method. The increase in MA AT during MVC compared with rest can be explained by a shift of the Achilles tendon away from the joint center, due to a thickening of the plantar flexor muscles. This shift is possibly smaller in magnitude when the knee is fully extended compared with a more flexed position. Support for this speculation comes from Riemann et al., who demonstrated that muscle stiffness of the gastrocnemius medialis is greater during full knee extension compared with more flexed positions. A direct consequence of the greater stiffness could be a reduction of Achilles tendon movement during MVC and therefore a reduced increase in MA AT during MVC when compared with rest. Our results, in combination with those of Maganaris et al., let us speculate that there is an interaction between knee angle, MA AT and plantar flexor contraction level. Future research should be conducted to specifically test this hypothesis.

The present findings have specific implications for musculoskeletal modeling. Our descriptive results can be used as guidance for modelers to account for the dependence of MA AT on ankle angle and contraction level. However, it is important to consider the within-group variability observed in our participants. The somewhat large standard deviations reported here indicate that the interaction between ankle angle, muscular contraction level and MA AT can differ between individuals. This variability should be taken into consideration by performing appropriate sensitivity analyses.

Acknowledgments

This study was supported by a grant from the Engineering and Physical Sciences Research Council, UK (EPSRC Reference: EP/E013007/1).

References